论文标题
关于与能源收获客户的联合学习
On Federated Learning with Energy Harvesting Clients
论文作者
论文摘要
在本文中,我们提出了一个能量收集的能量收获框架,以迎合物联网设备和分布式机器学习的扩散。 EH的引入意味着不能保证客户参与任何FL回合的可用性,这使理论分析变得复杂。我们得出了新颖的收敛界限,该界限捕获了由于参与客户的随机EH特性而引起的随机变化设备可用性的影响,并具有非convex损失函数的并行和局部随机梯度下降(SGD)。结果表明,拥有一个统一的客户调度,可以最大程度地提高整个FL过程的最小客户端数量,这是可取的,通过使用现实世界中的FL任务和最先进的EH Scheduler的数值实验进一步证实了这一点。
Catering to the proliferation of Internet of Things devices and distributed machine learning at the edge, we propose an energy harvesting federated learning (EHFL) framework in this paper. The introduction of EH implies that a client's availability to participate in any FL round cannot be guaranteed, which complicates the theoretical analysis. We derive novel convergence bounds that capture the impact of time-varying device availabilities due to the random EH characteristics of the participating clients, for both parallel and local stochastic gradient descent (SGD) with non-convex loss functions. The results suggest that having a uniform client scheduling that maximizes the minimum number of clients throughout the FL process is desirable, which is further corroborated by the numerical experiments using a real-world FL task and a state-of-the-art EH scheduler.