论文标题
用于边缘标记tableaux的集成系统和晶体
Integrable systems and crystals for edge labeled tableaux
论文作者
论文摘要
我们介绍了Edge Schur函数$ e^λ$,这些$ e^λ$被定义为“ tableaux”上的生成系列。我们将$ e^λ$作为可解决的晶格模型的分区函数提出,我们用来证明它们是对称的多项式,并带有cauchy型身份,并带有castorial schur schur多项式。最后,我们在边缘标记的Tableau上给出了一个晶体结构,以给出$ e^λ$的积极的多项式扩展,并显示出其与拥挤的算法交织在一起。
We introduce the edge Schur functions $E^λ$ that are defined as a generating series over edge labeled tableaux. We formulate $E^λ$ as the partition function for a solvable lattice model, which we use to show they are symmetric polynomials and derive a Cauchy-type identity with factorial Schur polynomials. Finally, we give a crystal structure on edge labeled tableau to give a positive Schur polynomial expansion of $E^λ$ and show it intertwines with an uncrowding algorithm.