论文标题
预测平面外P型GESE的出色热电性能
Outstanding thermoelectric performance predicted for out-of-plane p-doped GeSe
论文作者
论文摘要
锡硒尼(SNSE)的创纪录的热电学性能激发了对具有相同结构的模拟化合物的研究。最近出现的一个有前途的候选人是葡萄球菌(GESE)。在这里,我们使用孔 - 音波散射的广泛的第一原理计算,我们研究了p掺杂的GESE正骨相位相的热电传输特性。我们预测,由于其高的塞贝克系数,极低的洛伦兹数量,超低总导热率和相对较大的频带间隙,因此在广泛的温度下,GESE的热电学性能出色。特别是,GESE中的平面外向在500 K以上的温度上呈现等效的或什至更高的性能。通过将分析扩展到900 K,我们在4x10^19 cm^-3的最佳孔密度下获得了优异孔密度(ZT = 3.2)的超高值(ZT = 3.2)。我们的工作为继续实验工作提供了强大的动力,重点是提高GESE掺杂效率,以达到这种最佳的孔密度。
The record-breaking thermoelectric performance of tin selenide (SnSe) has motivated the investigation of analogue compounds with the same structure. A promising candidate that emerged recently is germanium selenide (GeSe). Here, using extensive first-principles calculations of the hole-phonon and hole-impurity scattering, we investigate the thermoelectric transport properties of the orthorhombic phase of p-doped GeSe. We predict outstanding thermoelectric performance for GeSe over a broad range of temperatures due to its high Seebeck coefficients, extremely low Lorenz numbers, ultralow total thermal conductivity, and relatively large band gap. In particular, the out-of-plane direction in GeSe presents equivalent or even higher performance than SnSe for temperatures above 500 K. By extending the analysis to 900 K, we obtained an ultrahigh value for the thermoelectric figure of merit (zT = 3.2) at the optimal hole density of 4x10^19 cm^-3. Our work provides strong motivation for continued experimental work focusing on improving the GeSe doping efficiency in order to achieve this optimal hole density.