论文标题

宽带极化不敏感性和高填充物超导型微管单光子检测器的高检测效率

Broadband polarization insensitivity and high detection efficiency in high-fill-factor superconducting microwire single-photon detectors

论文作者

Reddy, Dileep V., Otrooshi, Negar, Nam, Sae Woo, Mirin, Richard P., Verma, Varun B.

论文摘要

通过吸收当前偏置的纳米级超导结构的单光子检测已成为量子光学和相关场中的首选技术。单模光纤包装设备已经看到了在检测效率,时机抖动,恢复时间和最大可持续计数率的新记录中。迄今为止,降低极化灵敏度的流行方法仅限于在活性区域引入几何对称对称的纳米线曲折,例如螺旋和分形。弯曲半径的限制和扩展的限制在这种设计中填充因子限制了其最大效率。在微米级超导电线中发现单光子灵敏度的发现可以使新型曲折图案在填充因子上没有有效的上限。这项工作证明了同时低极化敏感性($ 1.02 \ pm 0.008 $)和高检测效率($> 91.8 \%\%\%$ $ 67 \%$ $ $ 2 \%$ $ 2 \ times10^5 $每秒计数)在0.51 $ nm中,以$ 40 $ nm的频段为$ 40 $ nm,以0.551 $ $μ\ text-rire minir in prection \ text-riac \ text-mir。钨硅化剂,有0.91美元的活性区域填充因子。这些设备的效率为$ 96.5-96.9 \%\ pm 0.5 \%$ at $ 1 \ times10^5 $每秒计数1550 nm light。

Single-photon detection via absorption in current-biased nanoscale superconducting structures has become a preferred technology in quantum optics and related fields. Single-mode fiber packaged devices have seen new records set in detection efficiency, timing jitter, recovery times, and largest sustainable count rates. The popular approaches to decreasing polarization sensitivity have thus far been limited to introduction of geometrically symmetric nanowire meanders, such as spirals and fractals, in the active area. The constraints on bending radii, and by extension, fill factors, in such designs limits their maximum efficiency. The discovery of single-photon sensitivity in micrometer-scale superconducting wires enables novel meander patterns with no effective upper limit on fill factor. This work demonstrates simultaneous low-polarization sensitivity ($1.02\pm 0.008$) and high detection efficiency ($> 91.8\%$ with $67\%$ confidence at $2\times10^5$ counts per second) across a $40$ nm bandwidth centered at 1550 nm in 0.51 $μ\text{m}$ wide microwire devices made of silicon-rich tungsten silicide, with a $0.91$ fill factor in the active area. These devices boasted efficiencies of $96.5-96.9\% \pm 0.5\%$ at $1\times10^5$ counts per second for 1550 nm light.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源