论文标题
崩溃的地图和准静态
Collapsing Maps and Quasi-Isometries
论文作者
论文摘要
我们引入了B-Metric的概括,我们称为(B,C)Metric。我们表明,如果$ x $是$(b,c)$ - 公制空间和$ψ:x \ longrightArrow y $是准iS-iSometry,则$ y $ is $ is $(b,c)$ - $ - METRIZABLE。我们还定义了可以应用于任意$(b,c)$ - 公制空间的特定折叠地图。我们在此崩溃的映射的图像上定义了一个距离函数,并证明了崩溃的映射是准静电法。
We introduce a generalization of the b-metric we call a (b,c)-metric. We show that if $X$ is a $(b,c)$-metric space and $ψ: X \longrightarrow Y$ is a quasi-isometry then $Y$ is $(b,c)$-metrizable. We also define a particular kind of collapsing map that can be applied to an arbitrary $(b,c)$-metric space. We define a distance function on the image of this collapsing map and with this prove that the collapsing map is a quasi-isometry.