论文标题
MoiréLandau粉丝和魔术零
Moiré Landau fans and magic zeros
论文作者
论文摘要
我们研究了均匀磁场下Moiré系统的能量谱。超级晶格的潜力通常将Landau水平扩大到具有有限带宽的Chern带中。但是,我们发现这些Chern频段在我们配音“魔术零”的离散磁场上变得平坦。在没有Moiré超级晶格的情况下,平面带子空间通常与Landau级子空间不同。通过开发一种半经典量化方法并考虑了超晶格诱导的bragg反思,我们证明了魔术零是由两个不同$ k $ - 空间轨道的同时量化引起的。 Magic Zeros的平面乐队为探索晶体分数量子厅物理学提供了新的环境。
We study the energy spectrum of moiré systems under a uniform magnetic field. The superlattice potential generally broadens Landau levels into Chern bands with finite bandwidth. However, we find that these Chern bands become flat at a discrete set of magnetic fields which we dub "magic zeros". The flat band subspace is generally different from the Landau level subspace in the absence of the moiré superlattice. By developing a semiclassical quantization method and taking account of superlattice induced Bragg reflection, we prove that magic zeros arise from the simultaneous quantization of two distinct $k$-space orbits. The flat bands at magic zeros provide a new setting for exploring crystalline fractional quantum Hall physics.