论文标题

使用固体SIO来源:应用于$β$ -GA2O3,朝着氧化物分子束外延的可控si掺杂

Towards controllable Si-doping in oxide molecular beam epitaxy using a solid SiO source: Application to $β$-Ga2O3

论文作者

Ardenghi, A., Bierwagen, O., Falkenstein, A., Hoffmann, G., Lähnemann, J., Martin, M., Mazzolini, P.

论文摘要

通过将固体SIO用作常规积液细胞中的替代源材料来解决与氧化物分子束外延(MBE)中Si源材料控制Si掺杂的氧化相关问题。在不同温度下($ t_ {sio} $)的直接Sio-Flux($φ_{sio} $)的视线四杆质谱($φ_{sio} $)证实了SIO分子以3.3ev的激活能量升华。 $ t_ {sio} $ - 依赖性$φ_{sio} $在对源材料进行o $ _ {2} $ - $ 10^{ - 5} $ MBAR的背景(典型的氧化物MBE MBE MBE机制)之前,以真空测量。没有明显的$φ_{sio} $差异表明分子o $ _ {2} $中的源氧化可忽略不计。使用此源种植了Si掺杂的$β$ -GA2O3层的氧气等离子体辅助MBE。评估了基质的$φ_{sio} $ [从2.9x10 $^{9} $ cm $ $^{ - 2} $ s $^{ - 1} $($ t_ {sio} $ = 700°C)到5.5x10 $^{13} $ cm $ cm $ cm $^{ - 2} $} (t $ _ {sio} $ = 1000°C)]和Si-Cencentration在$β$ -GA2O3层中以次级离子质谱法测量的$β$ -GA2O3层突出显示了对氧化物MBE的连续Si兴奋剂的前所未有的控制,以控制氧化物MBE,即,即$ N_ {SI} $ n_ {si} $ 3x10 $} ($ t_ {sio} $ = 700°C)最高1.7x10 $^{20} $ cm $^{ - 3} $($ t_ {sio} $ = 900°C)。对于同型$β$ -GA2O3层,霍尔电荷载体浓度为3x10 $^{19} $ cm $^{ - 3} $,与所提供的$φ_{sio} $($ t_ {sio} $ = 800°C)。 $β$ -GA2O3(010)层之间未发现Sio-Corporation差异,可在750°C下生长,$β$ -GA2O3(-201)层在550°C下生长杂质。活性氧(等离子体)的存在导致部分源氧化和掺杂浓度的相关降低(尤其是在$ t_ {sio} $ <800°C下),这已通过简单的模型进行了暂定解释。在1100°C下脱水可恢复氧化。

The oxidation-related issues in controlling Si doping from the Si source material in oxide molecular beam epitaxy (MBE) is addressed by using solid SiO as an alternative source material in a conventional effusion cell. Line-of-sight quadrupole mass spectrometry of the direct SiO-flux ($Φ_{SiO}$) from the source at different temperatures ($T_{SiO}$) confirmed SiO molecules to sublime with an activation energy of 3.3eV. The $T_{SiO}$-dependent $Φ_{SiO}$ was measured in vacuum before and after subjecting the source material to an O$_{2}$-background of $10^{-5}$ mbar (typical oxide MBE regime). The absence of a significant $Φ_{SiO}$ difference indicates negligible source oxidation in molecular O$_{2}$. Mounted in an oxygen plasma-assisted MBE, Si-doped $β$-Ga2O3 layers were grown using this source. The $Φ_{SiO}$ at the substrate was evaluated [from 2.9x10$^{9}$ cm$^{-2}$s$^{-1}$ ($T_{SiO}$=700°C) to 5.5x10$^{13}$ cm$^{-2}$s$^{-1}$ (T$_{SiO}$=1000°C)] and Si-concentration in the $β$-Ga2O3 layers measured by secondary ion mass spectrometry highlighting unprecedented control of continuous Si-doping for oxide MBE, i.e., $N_{Si}$ from 4x10$^{17}$ cm$^{-3}$ ($T_{SiO}$=700°C) up to 1.7x10$^{20}$ cm$^{-3}$ ($T_{SiO}$=900°C). For a homoepitaxial $β$-Ga2O3 layer an Hall charge carrier concentration of 3x10$^{19}$ cm$^{-3}$ in line with the provided $Φ_{SiO}$ ($T_{SiO}$=800°C) is demonstrated. No SiO-incorporation difference was found between $β$-Ga2O3(010) layers homoepitaxially grown at 750°C and $β$-Ga2O3(-201) layers heteroepitaxially grown at 550°C. The presence of activated oxygen (plasma) resulted in partial source oxidation and related decrease of doping concentration (particularly at $T_{SiO}$<800°C) which has been tentatively explained with a simple model. Degassing the source at 1100°C reverted the oxidation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源