论文标题

部分可观测时空混沌系统的无模型预测

Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning

论文作者

Ouala, Said, Brunton, Steven L., Pascual, Ananda, Chapron, Bertrand, Collard, Fabrice, Gaultier, Lucile, Fablet, Ronan

论文摘要

现实世界地球物理系统的复杂性通常是由于观察到的测量取决于隐藏变量的事实而变得更加复杂。这些潜在变量包括未解决的小尺度和/或快速发展的过程,部分观察到的耦合或耦合系统中的强迫。在海洋 - 大气动力学中就是这种情况,对此,未知的内部动力学会影响表面观测。因此,这种部分观察和高度非线性系统的计算与计算相关表示是具有挑战性的,通常仅限于短期预测应用。在这里,我们研究了隐式动态嵌入的物理受限的学习,利用神经普通微分方程(节点)表示。一个关键目标是限制其界限,这促进了学习动力学的概括为任意初始条件。所提出的体系结构是在深度学习框架内实施的,并且在代表地球物理动力学的不同病例研究的最先进方案方面证明了其相关性。

The complexity of real-world geophysical systems is often compounded by the fact that the observed measurements depend on hidden variables. These latent variables include unresolved small scales and/or rapidly evolving processes, partially observed couplings, or forcings in coupled systems. This is the case in ocean-atmosphere dynamics, for which unknown interior dynamics can affect surface observations. The identification of computationally-relevant representations of such partially-observed and highly nonlinear systems is thus challenging and often limited to short-term forecast applications. Here, we investigate the physics-constrained learning of implicit dynamical embeddings, leveraging neural ordinary differential equation (NODE) representations. A key objective is to constrain their boundedness, which promotes the generalization of the learned dynamics to arbitrary initial condition. The proposed architecture is implemented within a deep learning framework, and its relevance is demonstrated with respect to state-of-the-art schemes for different case-studies representative of geophysical dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源