论文标题
遗传统一财产$γ$
Hereditary uniform property $Γ$
论文作者
论文摘要
我们研究具有列列座的统一财产$γ$,用于可分离的简单$ c^*$ - 代数,可能不是准确的。 我们表明,具有严格比较的稳定有限的可分离简单$ C^*$ - 代数$ a $ a $,均匀的属性$γ$具有曲折的近似振荡零和稳定的等级。此外,在这种情况下,其遗传性$ c^*$ - subegras还具有统一属性$γ的版本。
We study the uniform property $Γ$ for separable simple $C^*$-algebras which have quasitraces and may not be exact. We show that a stably finite separable simple $C^*$-algebra $A$ with strict comparison and uniform property $Γ$ has tracial approximate oscillation zero and stable rank one. Moreover in this case, its hereditary $C^*$-subalgebras also have a version of uniform property $Γ.$ If a separable non-elementary simple amenable $C^*$-algebra $A$ with strict comparison has this hereditary uniform property $Γ,$ then $A$ is ${\cal Z}$-stable.