论文标题
沉默机器人的协作分散
Collaborative Dispersion by Silent Robots
论文作者
论文摘要
在分散问题中,一组$ k $共同贴合的移动机器人必须以未知网络的不同节点重新安置自己。该网络被建模为匿名图$ g =(v,e)$,其中图的节点未标记。带有$ d $的节点$ v $的边缘在$ 0,1,\ cdots,d-1 $ in $ v $的范围内标记为端口号。这些机器人在$ [0,l] $的范围内具有唯一的ID,其中$ l \ ge k $,最初放置在源节点$ s $中。每个机器人只知道自己的ID,但不知道其他机器人的ID或$ L,K $的值。传统上,分散任务是通过两种类型的通信能力来实现的:(a)当某些机器人处于相同的节点时,它们可以通过在它们之间交换消息来通信(b)网络中的任何两个机器人都可以在它们之间交换消息。 在本文中,我们询问共同确定的机器人之间的沟通能力是否需要用于实现分散。我们表明,即使没有通信的能力,也可以在一个较弱的模型中实现一组移动机器人的分散任务,在这个模型中,一个节点$ v $的机器人可以在任何回合开始时访问以下非常有限的信息:(1)我一个人在$ v $中单独使用? (2)与上一轮相比,$ V $时的机器人数量增加或减少? 我们提出了一种确定性算法,该算法可以在任何给定的图$ g =(v,e)$ o \ o \ left(k \ log l+k^2 \logΔ\ right)$上实现分散,其中$Δ$是$ g $中节点的最大程度。每个机器人使用$ O(\ log L+ \logδ)$附加内存。我们还证明,通过$ O(\ log L + \logδ)$其他内存无法通过一组移动机器人来实现分散的任务。
In the dispersion problem, a set of $k$ co-located mobile robots must relocate themselves in distinct nodes of an unknown network. The network is modeled as an anonymous graph $G=(V,E)$, where the nodes of the graph are not labeled. The edges incident to a node $v$ with degree $d$ are labeled with port numbers in the range $0,1, \cdots, d-1$ at $v$. The robots have unique ids in the range $[0,L]$, where $L \ge k$, and are initially placed at a source node $s$. Each robot knows only its own id but does not know the ids of the other robots or the values of $L,k$. The task of dispersion was traditionally achieved with the assumption of two types of communication abilities: (a) when some robots are at the same node, they can communicate by exchanging messages between them (b) any two robots in the network can exchange messages between them. In this paper, we ask whether this ability of communication among co-located robots is necessary to achieve dispersion. We show that even if the ability of communication is not available, the task of dispersion by a set of mobile robots can be achieved in a much weaker model where a robot at a node $v$ has the access of following very restricted information at the beginning of any round: (1) am I alone at $v$? (2) the number of robots at $v$ increased or decreased compare to the previous round? We propose a deterministic algorithm that achieves dispersion on any given graph $G=(V,E)$ in time $O\left( k\log L+k^2 \log Δ\right)$, where $Δ$ is the maximum degree of a node in $G$. Each robot uses $O(\log L+ \log Δ)$ additional memory. We also prove that the task of dispersion cannot be achieved by a set of mobile robots with $o(\log L + \log Δ)$ additional memory.