论文标题

重新思考图形卷积网络在知识图完成中

Rethinking Graph Convolutional Networks in Knowledge Graph Completion

论文作者

Zhang, Zhanqiu, Wang, Jie, Ye, Jieping, Wu, Feng

论文摘要

图形卷积网络(GCN)(有效地建模图结构)在知识图完成(KGC)中越来越流行。基于GCN的KGC模型首先使用GCN生成表达实体表示,然后使用知识图嵌入(KGE)模型来捕获实体和关系之间的相互作用。但是,尽管引入了其他计算复杂性,但许多基于GCN的KGC模型却无法胜过最先进的KGE模型。这种现象促使我们探索kgc中GCN的实际影响。因此,在本文中,我们建立在代表性的基于GCN的KGC模型的基础上,并引入变体以查找KGC中的GCN因子至关重要。令人惊讶的是,我们从实验中观察到,GCN中的图形结构建模对KGC模型的性能没有重大影响,这与共同的信念相反。取而代之的是,实体表示的转换负责改进绩效。基于观察结果,我们提出了一个名为LTE-KGE的简单而有效的框架,该框架将现有的KGE模型与线性转换的实体嵌入式相提并论。实验表明,LTE-KGE模型通过基于GCN的KGC方法导致了相似的性能改进,同时在计算上更有效。这些结果表明,现有的GCN对于kgc不必要,基于GCN的新型KGC模型应依靠更多的消融研究来验证其有效性。所有实验的代码均可在https://github.com/miralab-ustc/gcn4kgc上在github上获得。

Graph convolutional networks (GCNs) -- which are effective in modeling graph structures -- have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源