论文标题

通过分析12铅标准ECG,用于预测房颤的深人造神经网络

Deep artificial neural network for prediction of atrial fibrillation through the analysis of 12-leads standard ECG

论文作者

Scagnetto, A., Barbati, G., Gandin, I., Cappelletto, C., Baj, G., Cazzaniga, A., Cuturello, F., Ansuini, A., Bortolussi, L., Di Lenarda, A.

论文摘要

心房颤动(AF)是心脏的心律不齐,尽管通常无症状,但它代表了中风的重要危险因素,因此能够在心电图检查中预测AF,对主动针对高风险患者的攻击会产生巨大影响。在目前的工作中,我们使用卷积神经网络来分析ECG并预测从现实数据集开始的心房颤动,即比其他研究要少的ECG,并扩展了ECG和AF诊断之间的最大距离。我们实现了75.5%(0.75)的AUC首先通过转移技术增加了数据集的大小,其次使用卷积神经网络的扩张参数。此外,我们发现,与在考试中报告AF的临床医生通常使用的内容相反,预测AF的任务最有用的潜在客户是D1和AVR。同样,我们发现检查最重要的频率在5-20 Hz的范围内。最后,我们开发了一个能够在同时管理的网络,心电图信号以及电子健康记录,表明不同数据源之间的整合是一种有利可图的路径。实际上,此类净收益的2.8%使我们达到78.6%(STD 0.77)AUC。在未来的作品中,我们将加深来源的整合,也将加深我们声称AVR是最有用的领导者的原因。

Atrial Fibrillation (AF) is a heart's arrhythmia which, despite being often asymptomatic, represents an important risk factor for stroke, therefore being able to predict AF at the electrocardiogram exam, would be of great impact on actively targeting patients at high risk. In the present work we use Convolution Neural Networks to analyze ECG and predict Atrial Fibrillation starting from realistic datasets, i.e. considering fewer ECG than other studies and extending the maximal distance between ECG and AF diagnosis. We achieved 75.5% (0.75) AUC firstly increasing our dataset size by a shifting technique and secondarily using the dilation parameter of the convolution neural network. In addition we find that, contrarily to what is commonly used by clinicians reporting AF at the exam, the most informative leads for the task of predicting AF are D1 and avR. Similarly, we find that the most important frequencies to check are in the range of 5-20 Hz. Finally, we develop a net able to manage at the same time the electrocardiographic signal together with the electronic health record, showing that integration between different sources of data is a profitable path. In fact, the 2.8% gain of such net brings us to a 78.6% (std 0.77) AUC. In future works we will deepen both the integration of sources and the reason why we claim avR is the most informative lead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源