论文标题
Lévy随机环境中两种连续分支过程的Wasserstein型距离
Wasserstein-type distances of two-type continuous-state branching processes in Lévy random environments
论文作者
论文摘要
在自然条件下,我们证明了在具有移民的莱维随机环境中两种连续的分支过程的瓦斯泰因距离中的指数性成分。此外,我们准确地表达了指数的参数。耦合方法和条件分支特性在该方法中起着重要作用。使用超级过程的工具,还证明了总方差距离中的登山性。
Under natural conditions, we proved the exponential ergodicity in Wasserstein distance of two-type continuous-state branching processes in Lévy random environments with immigration. Furthermore, we expressed accurately the parameters of the exponent. The coupling method and the conditioned branching property play an important role in the approach. Using the tool of superprocesses, the ergodicity in total variance distance is also proved.