论文标题

动态晶体学揭示了立方gete的自发各向异性

Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe

论文作者

Kimber, Simon A. J., Zhang, Jiayong, Liang, Charles H., Guzman-Verri, Gian G., Littlewood, Peter B., Cheng, Yongqiang, Abernathy, Douglas L., Hudspeth, Jessica M., Luo, Zhong-Zhen, Kanatzidis, Mercouri G., Chatterji, Tapan, Ramirez-Cuesta, Anibal J., Billinge, Simon J. L.

论文摘要

通常认为,热电学或杂化钙钛矿材料等立方能材料被认为是高度混乱的。在GEE和相关的IV-VI化合物中,这被认为提供了热电应用所需的低热导电。由于常规晶体学无法区分静态障碍和原子运动,因此我们开发了能量分辨的可变分配配对分布功能技术。这会在与原子运动相关的时间尺度上收集结构快照。由于与以前的解释分歧,我们发现Gete的时间平均结构在所有温度下都是结晶的,但是在较高温度下,各向异性的Anharmonic动力学在较高的温度下以快速快捷速度类似于静态疾病,并具有相关的铁电气波动,并沿着$ <$ 100 $ $ $ $ $ c方向。我们表明,这种各向异性自然来自银堡 - 兰道模型,该模型通过长时间的弹性相互作用将极化波动伴随。通过访问能量材料的时间依赖性原子相关性,我们解决了局部和平均结构探针之间的长期分歧,并表明自发性各向异性在立方IV-VI材料中无处不在。

Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique. This collects structural snapshots with varying exposure times, on timescales relevant for atomic motions. In disagreement with previous interpretations, we find the time-averaged structure of GeTe to be crystalline at all temperatures, but with anisotropic anharmonic dynamics at higher temperatures that resemble static disorder at fast shutter speeds, with correlated ferroelectric fluctuations along the $<$100$>$c direction. We show that this anisotropy naturally emerges from a Ginzburg-Landau model that couples polarization fluctuations through long-range elastic interactions. By accessing time-dependent atomic correlations in energy materials, we resolve the long-standing disagreement between local and average structure probes, and show that spontaneous anisotropy is ubiquitous in cubic IV-VI materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源