论文标题
Weyl节点线半度法中的自旋三键超导性
Spin-triplet superconductivity in Weyl nodal-line semimetals
论文作者
论文摘要
拓扑半学是三维材料,具有对称性保护的无质量散装激发。作为一种特殊情况,Weyl节点线半学在没有反转或分裂时间对称性的材料中实现,并且具有大量的淋巴结线。材料,lanisi,laptsi和laptge的111个家庭属于该类别。在这里,通过将MUON自旋旋转和放松与热力学测量相结合,我们发现这些材料表现出完全开发的超导基态,同时自发地破坏了超导过渡时的时间反转对称性。由于时间反向对称性对于保护正常状态拓扑至关重要,因此进入超导状态时的破裂应显着导致拓扑相变。通过为正常状态带结构开发最小模型并假设纯粹的自旋三个配对,我们表明可以准确描述整个家族的超导性能。我们的结果表明,此处报道的111家户主提供了一个理想的测试床,用于研究Weyl nodal-line Fermions的外来特性与非常规的超导性之间的丰富相互作用。
Topological semimetals are three dimensional materials with symmetry-protected massless bulk excitations. As a special case, Weyl nodal-line semimetals are realized in materials either having no inversion or broken time-reversal symmetry and feature bulk nodal lines. The 111-family of materials, LaNiSi, LaPtSi and LaPtGe (all lacking inversion symmetry), belong to this class. Here, by combining muon-spin rotation and relaxation with thermodynamic measurements, we find that these materials exhibit a fully-gapped superconducting ground state, while spontaneously breaking time-reversal symmetry at the superconducting transition. Since time-reversal symmetry is essential for protecting the normal-state topology, its breaking upon entering the superconducting state should remarkably result in a topological phase transition. By developing a minimal model for the normal-state band structure and assuming a purely spin-triplet pairing, we show that the superconducting properties across the family can be described accurately. Our results demonstrate that the 111-family reported here provides an ideal test-bed for investigating the rich interplay between the exotic properties of Weyl nodal-line fermions and unconventional superconductivity.