论文标题
超冷的Jahn-Teller冰
Supercooled Jahn-Teller Ice
论文作者
论文摘要
当沮丧的pyrochlore晶格上的旋转服从著名的2- $ -2- $ -2- $ uce $冰规则时,它们处于相关阶段,并违反了热力学的第三定律。同样,如果pyrochlore晶格上的原子离子进出四面体,它们可能会遵守类似于冰规则的约束。我们发现,pyrochlore molybdates $ a_2 $ mo $ $ _2 $ o $ o $ _7 $($ a = $ y,dy,tb)的模型表现出“超冷的冰”状态mo $ $ $ $ $ $ $ $ $ $ $^{4+} $离子的状态,当时我们要考虑Jahn-teller(Jahn-teller(Jahn-Teller)(JAHN-TELLERERERERERERERERERERE)。当晶格扭曲减少局部晶体场的对称性时,会产生JT效应,从而导致轨道 - 能量分解,从而导致局部能量增益。与导致定期远程排序的标准JT效应不同,Mo $ $^{4+} $离子的位移遵循冰状规则无序。我们通过显微镜得出了一个模型,该模型通过在In-Out晶格位移之间的第二和第三邻居相互作用与标准冰的最近邻居相互作用相当强。在那里,冰状状态的众所周知的几乎平坦的能量景观被改为具有晶体样基态的高度准冰层冰状液态。我们的蒙特卡洛模拟表明,通过避免推定的一级过渡,这种液体仍然非常稳定至低温。超冷JT冰状态的放松表现出具有平稳结构的玻璃动力学。它们非常适合在分子液体中经常发现的“良好玻璃形式”的特征,但是在材料固体中从未观察到。相互作用的晶格自由度的高玻璃形成能力将在材料的旋转玻璃过渡中起关键作用。
When the spins on the frustrated pyrochlore lattice obey the celebrated 2-$in$-2-$out$ ice rule, they stay in a correlated disordered phase and break the third law of thermodynamics. Similarly, if the atomic ions on the pyrochlore lattice move in and outward of the tetrahedra, they may obey a constraint resembling the ice rule. We discover that a model for pyrochlore molybdates $A_2$Mo$_2$O$_7$ ($A=$Y, Dy, Tb) exhibits a "supercooled ice" state of the displacement degrees of freedom of Mo$^{4+}$ ions, when we take account of the Jahn-Teller (JT) effect. The JT effect occurs when the lattice distortions reduce the symmetry of the local crystal field, resulting in the orbital-energy-splitting that causes the local energy gain. Unlike the standard JT effect that leads to periodic long range ordering, the displacements of Mo$^{4+}$ ions are disordered following the ice-like rule. We microscopically derive a model that describes this situation by having the 2nd and 3rd neighbor interactions between in-out lattice displacements comparably as strong as the nearest neighbor interactions of standard ice. There, the well-known nearly flat energy landscape of the ice state is altered to a metastable highly quasi-degenerate ice-like liquid state coexisting with a crystalline-like ground state. Our Monte Carlo simulations show that this liquid remains remarkably stable down to low temperatures by avoiding the putative first order transition. The relaxation in the supercooled JT ice state exhibits glassy dynamics with a plateau structure. They fit the feature of a "good glassformer" very often found in molecular liquids, but that has never been observed in material solids. The high glass-forming ability of the interacting lattice degrees of freedom will play a key role in the spin-glass transition of the material.