论文标题

通过扩张坐标系中的保护定律对加速梯度方法进行连续分析

Continuous-Time Analysis of Accelerated Gradient Methods via Conservation Laws in Dilated Coordinate Systems

论文作者

Suh, Jaewook J., Roh, Gyumin, Ryu, Ernest K.

论文摘要

我们通过在扩张的坐标系中得出保护法,分析加速梯度方法的连续时间模型。即,我们分析了一些$ w(t)= t^α(x(t)-x_c)$的动力学,而不是分析$ w(t)= t^α(x(t)-x_c)$的动力学,并在此扩张的坐标系统中得出了类似于物理能量的保守数量,类似于物理能量。通过这种方法,我们以简化的方式恢复了许多已知的连续时间分析,并获得了OGM-G的新型连续时间分析,OGM-G是一种加速机制,可有效降低与Nesterov不同的梯度幅度。最后,我们表明,在扩张的坐标系中,半秒符号欧拉离散化导致$ \ MATHCAL {O}(1/k^2)$速率在平滑凸的标准设置中,而没有任何进一步的假设,例如无限可不同的能力。

We analyze continuous-time models of accelerated gradient methods through deriving conservation laws in dilated coordinate systems. Namely, instead of analyzing the dynamics of $X(t)$, we analyze the dynamics of $W(t)=t^α(X(t)-X_c)$ for some $α$ and $X_c$ and derive a conserved quantity, analogous to physical energy, in this dilated coordinate system. Through this methodology, we recover many known continuous-time analyses in a streamlined manner and obtain novel continuous-time analyses for OGM-G, an acceleration mechanism for efficiently reducing gradient magnitude that is distinct from that of Nesterov. Finally, we show that a semi-second-order symplectic Euler discretization in the dilated coordinate system leads to an $\mathcal{O}(1/k^2)$ rate on the standard setup of smooth convex minimization, without any further assumptions such as infinite differentiability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源