论文标题
在Grothendieck- sl_1(d)混合特征中的serre猜想
On Grothendieck--Serre conjecture in mixed characteristic for SL_1(D)
论文作者
论文摘要
令R为混合特性的未塑造的常规局部环,D Azumaya r-Algebra,k r的分数,nrd,nrd降低了azumaya r-algebraD的规范同构。让A单元为R中。 对于常规局部环证明了类似的结果,这是在混合特征的离散评估环上几何定期的。这些结果扩展了a.sulin和作者在90年代中期证明的结果。
Let R be an unramified regular local ring of mixed characteristic, D an Azumaya R-algebra, K the fraction field of R, Nrd the reduced norm homomorphism for the Azumaya R-algebra D. Let a be a unit in R. It is proved the following: suppose the equation Nrd=a has a solution over K, then it has a solution over R. Similar results are proved for regular local rings, which are geometrically regular over a discrete valuation ring of mixed characteristic. These results extend result proven by A.Sulin and the author in the middle of 90's.