论文标题

有限的对称域之间完全测量的kobayashi等轴测图的全态性

Holomorphicity of totally geodesic Kobayashi isometry between bounded symmetric domains

论文作者

Kim, Sung-Yeon, Seo, Aeryeong

论文摘要

在本文中,我们研究了有限的对称域之间完全测量的kobayashi等距嵌入的全态性。首先,我们证明,对于$ c^1 $ -Smooth完全地理kobayashi等距嵌入$ f \ colonω\toΩ $ \ text {rank}(ω)\ geq \ text {rank}(f _*v)$对于任何切线向量$ v $ of $ω$,然后$ f $是holomorphicic or holomorphic or act tot holomorphic or act to holomorphic or as anti-lolomorphicic。其次,我们表征了$ c^1 $ kobayashi等法,从可还原有限的对称域到本身。

In this paper, we study the holomorphicity of totally geodesic Kobayashi isometric embeddings between bounded symmetric domains. First we show that for a $C^1$-smooth totally geodesic Kobayashi isometric embedding $f\colon Ω\toΩ'$ where $Ω$, $Ω'$ are bounded symmetric domains, if $Ω$ is irreducible and $\text{rank}(Ω) \geq \text{rank}(Ω')$ or more generally, $\text{rank}(Ω) \geq \text{rank}(f_*v)$ for any tangent vector $v$ of $Ω$, then $f$ is either holomorphic or anti-holomorphic. Secondly we characterize $C^1$ Kobayashi isometries from a reducible bounded symmetric domain to itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源