论文标题

微型试验中的网络干扰

Network Interference in Micro-Randomized Trials

论文作者

Li, Shuangning, Wager, Stefan

论文摘要

微型制定试验(MRT)是一种实验设计,可用于开发最佳的移动健康干预措施。在MRT中,以通知或消息形式的干预措施通过智能手机发送给个人,以与健康相关的结果(例如体育锻炼或体重管理)。通常,移动健康干预措施具有社交媒体组成部分;因此,个人的结果可能取决于其他人的治疗和结果。在本文中,我们研究了在这种跨单元干扰的情况下进行的微型试验。我们使用网络干扰模型建模跨单元干扰。一个人的结果可能会影响另一个人的结果,并且仅当他们通过网络中的边缘连接时。假设动力学可以表示为马尔可夫决策过程,我们分析了大型样本渐近学中结果的行为,并表明当样本量进入无穷大时,它们会收敛到平均场限制。基于平均场结果,我们为各种因果估计的表征结果和估计策略,包括二进制干预的短期直接效应,其长期直接效应和其长期总效应。

The micro-randomized trial (MRT) is an experimental design that can be used to develop optimal mobile health interventions. In MRTs, interventions in the form of notifications or messages are sent through smart phones to individuals, targeting a health-related outcome such as physical activity or weight management. Often, mobile health interventions have a social media component; an individual's outcome could thus depend on other individuals' treatments and outcomes. In this paper, we study the micro-randomized trial in the presence of such cross-unit interference. We model the cross-unit interference with a network interference model; the outcome of one individual may affect the outcome of another individual if and only if they are connected by an edge in the network. Assuming the dynamics can be represented as a Markov decision process, we analyze the behavior of the outcomes in large sample asymptotics and show that they converge to a mean-field limit when the sample size goes to infinity. Based on the mean-field result, we give characterization results and estimation strategies for various causal estimands including the short-term direct effect of a binary intervention, its long-term direct effect and its long-term total effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源