论文标题
域对抗训练:游戏视角
Domain Adversarial Training: A Game Perspective
论文作者
论文摘要
域适应性的主要工作线专注于使用域交流训练学习不变表示。在本文中,我们从游戏理论的角度来解释这种方法。将最佳的解决方案定义为域训练中的最佳解决方案为本地NASH平衡,我们表明,在域交流训练中的梯度下降可以违反优化器的渐近收敛保证,通常会阻碍转移性能。我们的分析使我们用高阶求解器(即runge-kutta)代替梯度下降,为此我们得出了渐近收敛的保证。这个优化器家族的稳定性明显更高,并且允许更具侵略性的学习率,从而在用作替换标准优化器的替换时会导致高性能提高。我们的实验表明,与最先进的域 - 逆转方法结合使用,我们提高了3.5%的提高,而少于一半的训练迭代。我们的优化器易于实现,没有其他参数,并且可以插入任何域交流框架中。
The dominant line of work in domain adaptation has focused on learning invariant representations using domain-adversarial training. In this paper, we interpret this approach from a game theoretical perspective. Defining optimal solutions in domain-adversarial training as a local Nash equilibrium, we show that gradient descent in domain-adversarial training can violate the asymptotic convergence guarantees of the optimizer, oftentimes hindering the transfer performance. Our analysis leads us to replace gradient descent with high-order ODE solvers (i.e., Runge-Kutta), for which we derive asymptotic convergence guarantees. This family of optimizers is significantly more stable and allows more aggressive learning rates, leading to high performance gains when used as a drop-in replacement over standard optimizers. Our experiments show that in conjunction with state-of-the-art domain-adversarial methods, we achieve up to 3.5% improvement with less than of half training iterations. Our optimizers are easy to implement, free of additional parameters, and can be plugged into any domain-adversarial framework.