论文标题

P-ADIC迭代的集成在可分离的曲线上

p-adic iterated integration on semistable curves

论文作者

Katz, Eric, Litt, Daniel

论文摘要

我们使用UNIPOTENT LOG刚性基本组在可半固定的曲线上重新重新制定了P-ADIC迭代积分的理论。这个基本组携带了基本特性的Frobenius和Monodromy操作员。通过识别基本组的Frobenius-Invariant子组,我们将双重图的基本组识别为沿路径依赖性的Berkovich-coleman Integration的表征,是沿着双图图中路径的Frobenius-Invariant升力的集成。 Vologodsky的路径独立综合理论先前使用单肌条件进行了描述,现在可以鉴定为沿着组合规范途径沿伯科维奇 - 洛尔曼的整合,这是由由首先命名的作者和Cheng开发的组合迭代整合理论引起的。

We reformulate the theory of p-adic iterated integrals on semistable curves using the unipotent log rigid fundamental group. This fundamental group carries Frobenius and monodromy operators whose basic properties are established. By identifying the Frobenius-invariant subgroup of the fundamental group with the fundamental group of the dual graph, we characterize Berkovich--Coleman integration, which is path-dependent, as integration along the Frobenius-invariant lift of a path in the dual graph. Vologodsky's path-independent integration theory which was previously described using a monodromy condition can now be identified as Berkovich--Coleman integration along a combinatorial canonical path arising from the theory of combinatorial iterated integration as developed by the first-named author and Cheng.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源