论文标题

考虑了用于机器人操作中零弹性的世界模型

Factored World Models for Zero-Shot Generalization in Robotic Manipulation

论文作者

Biza, Ondrej, Kipf, Thomas, Klee, David, Platt, Robert, van de Meent, Jan-Willem, Wong, Lawson L. S.

论文摘要

具有许多物体环境的世界模型面临状态的组合爆炸:随着对象的数量的增加,可能的安排数量呈指数增长。在本文中,我们学会使用对象因素模型来概括机器人的拾取任务,这些世界模型通过确保预测与对象的排列相等,从而抵制组合爆炸。以前的对象因模型因其无法对动作进行建模或无法计划复杂的操作任务而受到限制。我们基于训练对象因素模型的最新对比方法,我们将其扩展到建模连续的机器人动作并准确预测机器人拾取的物理学。为此,我们使用了图形神经网络的残留堆栈,这些堆栈在其节点和边缘神经网络中都以多个级别接收动作信息。至关重要的是,我们博学的模型可以对培训数据中未表示的任务进行预测。也就是说,我们证明了对新任务的成功零弹性概括,模型性能仅略有下降。此外,我们表明,我们的模型合奏可用于计划涉及多达12个选秀权并使用启发式搜索进行动作的任务。我们还展示了转移到物理机器人。

World models for environments with many objects face a combinatorial explosion of states: as the number of objects increases, the number of possible arrangements grows exponentially. In this paper, we learn to generalize over robotic pick-and-place tasks using object-factored world models, which combat the combinatorial explosion by ensuring that predictions are equivariant to permutations of objects. Previous object-factored models were limited either by their inability to model actions, or by their inability to plan for complex manipulation tasks. We build on recent contrastive methods for training object-factored world models, which we extend to model continuous robot actions and to accurately predict the physics of robotic pick-and-place. To do so, we use a residual stack of graph neural networks that receive action information at multiple levels in both their node and edge neural networks. Crucially, our learned model can make predictions about tasks not represented in the training data. That is, we demonstrate successful zero-shot generalization to novel tasks, with only a minor decrease in model performance. Moreover, we show that an ensemble of our models can be used to plan for tasks involving up to 12 pick and place actions using heuristic search. We also demonstrate transfer to a physical robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源