论文标题

粘度解决方案理论在高阶微分方程中的应用

An Application of the Theory of Viscosity Solutions to Higher Order Differential Equations

论文作者

Coiculescu, Matei P.

论文摘要

我们将粘度解决方案的理论直接应用于大于两个以上的阶差分方程。我们证明,对于$ c^{2,α}(b_r)\ cap c(\ overline {b_r})$的解决方案,用于ball $ b_r \ b_r \ subset \ subet \ subbb {r}^n $:$ b_r \ subset {r}^n $: | d(ΔU)|^2 = f(x)$$带有navier边界条件($ u = g \ in c(\ partial b_r),ΔU= 0 \ textrm {on} \ partial b_r $)。我们还证明,在$ c^{1,α}中存在一个解决方案(\ mathbb {r}^n)$ for $ \ \ m athbb {r}^n $:$ \ mathbb {r}^n $:$ \ m}连续,边界和支撑在环上。

We directly apply the theory of viscosity solutions to partial differential equations of order greater than two. We prove that there exists a solution in $C^{2,α}(B_R)\cap C(\overline{B_R})$ for the inhomogeneous $\infty$-Bilaplacian equation on a ball $B_R\subset \mathbb{R}^n$: $$Δ_\infty^2 u:=(Δu)^3 |D(Δu)|^2 =f(x)$$ with Navier Boundary conditions ($u=g\in C(\partial B_R), Δu =0 \textrm{ on } \partial B_R$). We also prove that there exists a solution in $C^{1,α}(\mathbb{R}^n)$ for all $α>0$ to the eigenvalue problem on $\mathbb{R}^n$: $$Δ_\infty^2 u =-λu+f(x)$$ whenever $n\geq 3, λ<0,$ and $f(x)$ is continuous, bounded, and supported on an annulus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源