论文标题

马尔可夫重复互动量子系统

Markovian Repeated Interaction Quantum Systems

论文作者

Bougron, Jean-François, Joye, Alain, Pillet, Claude-Alain

论文摘要

我们研究一类动力学半群$(\ mathbb {l}^n)_ {n \ in \ mathbb {n}} $由Feynman--kac类型形式主义出现,来自随机量子动态系统$) $(ω_n)_ {n \ in \ mathbb {n}} $。我们表明,可以从Semigroup的大型$ n $渐近学中提取系统的较大时间行为,这反过来又与发电机$ \ mathbb {l} $的光谱属性直接相关。作为物理应用程序,我们考虑了$ \ Mathcal {l}_Ω$的情况,是减少的动态图,描述了系统$ \ Mathcal {s} $与热探针$ \ Mathcal {C c}_Ω$的重复交互。我们研究了该系统中熵的完整统计数据,并得出了热交和相关线性响应公式的波动定理。

We study a class of dynamical semigroups $(\mathbb{L}^n)_{n\in\mathbb{N}}$ that emerge, by a Feynman--Kac type formalism, from a random quantum dynamical system $(\mathcal{L}_{ω_n}\circ\cdots\circ\mathcal{L}_{ω_1}(ρ_{ω_0}))_{n\in\mathbb{N}}$ driven by a Markov chain $(ω_n)_{n\in\mathbb{N}}$. We show that the almost sure large time behavior of the system can be extracted from the large $n$ asymptotics of the semigroup, which is in turn directly related to the spectral properties of the generator $\mathbb{L}$. As a physical application, we consider the case where the $\mathcal{L}_ω$'s are the reduced dynamical maps describing the repeated interactions of a system $\mathcal{S}$ with thermal probes $\mathcal{C}_ω$. We study the full statistics of the entropy in this system and derive a fluctuation theorem for the heat exchanges and the associated linear response formulas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源