论文标题

与Bert的产品排名的多任务学习框架

A Multi-task Learning Framework for Product Ranking with BERT

论文作者

Wu, Xuyang, Magnani, Alessandro, Chaidaroon, Suthee, Puthenputhussery, Ajit, Liao, Ciya, Fang, Yi

论文摘要

产品排名是许多电子商务服务的关键组成部分。产品搜索的主要挑战之一是查询和产品之间的词汇不匹配,与其他信息检索域相比,这可能是更大的词汇差距问题。虽然越来越多的神经学习集以匹配专门针对克服此问题的方法,但它们并没有利用大型语言模型的最新进展进行产品搜索。另一方面,产品排名通常会处理多种类型的参与信号,例如点击,添加到车和购买,而大多数现有作品都集中在优化一个单一指标(例如点击率)上,可能会遭受数据稀疏性。在这项工作中,我们提出了一个新颖的端到端多任务学习框架,用于使用BERT进行产品排名,以应对上述挑战。所提出的模型利用特定于域的BERT和微调来弥合词汇鸿沟,并采用多任务学习来同时优化多个目标,这产生了用于产品搜索的一般端到端学习框架。我们对现实世界的电子商务数据集进行了一系列全面的实验,并证明了所提出的方法对最新基线方法的显着改善。

Product ranking is a crucial component for many e-commerce services. One of the major challenges in product search is the vocabulary mismatch between query and products, which may be a larger vocabulary gap problem compared to other information retrieval domains. While there is a growing collection of neural learning to match methods aimed specifically at overcoming this issue, they do not leverage the recent advances of large language models for product search. On the other hand, product ranking often deals with multiple types of engagement signals such as clicks, add-to-cart, and purchases, while most of the existing works are focused on optimizing one single metric such as click-through rate, which may suffer from data sparsity. In this work, we propose a novel end-to-end multi-task learning framework for product ranking with BERT to address the above challenges. The proposed model utilizes domain-specific BERT with fine-tuning to bridge the vocabulary gap and employs multi-task learning to optimize multiple objectives simultaneously, which yields a general end-to-end learning framework for product search. We conduct a set of comprehensive experiments on a real-world e-commerce dataset and demonstrate significant improvement of the proposed approach over the state-of-the-art baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源