论文标题
挖掘深层生成模型的流形,以用于多个数据符合的解决方案,这些解决方案不足的层析成像问题
Mining the manifolds of deep generative models for multiple data-consistent solutions of ill-posed tomographic imaging problems
论文作者
论文摘要
通常,层析成像是一个不良的反问题。通常,从层析成像测量中获得了备值对象的单个正则图像估计。但是,可能有多个对象都与相同的测量数据一致。生成此类替代解决方案的能力很重要,因为它可以实现成像系统的新评估。原则上,这可以通过后采样方法来实现。近年来,已采用深层神经网络进行后取样,结果令人鼓舞。但是,此类方法尚未用于大规模层析成像应用。另一方面,经验抽样方法在大规模成像系统上可能是可行的,并且可以对实际应用实现不确定性量化。经验抽样涉及在随机优化框架内解决正规化的逆问题,以获得替代数据一致的解决方案。在这项工作中,提出了一种新的经验抽样方法,该方法计算了与同一获得的测量数据一致的层析成像逆问题的多个解决方案。该方法通过在基于样式的生成对抗网络(stylegan)的潜在空间中反复解决优化问题的运行,并受到通过潜在空间探索(Pulse)方法的照片启发,该方法是为超分辨率任务开发而成的。通过涉及两种程式化的层析成像模式的数值研究来证明和分析所提出的方法。这些研究确定了该方法执行有效的经验抽样和不确定性定量的能力。
Tomographic imaging is in general an ill-posed inverse problem. Typically, a single regularized image estimate of the sought-after object is obtained from tomographic measurements. However, there may be multiple objects that are all consistent with the same measurement data. The ability to generate such alternate solutions is important because it may enable new assessments of imaging systems. In principle, this can be achieved by means of posterior sampling methods. In recent years, deep neural networks have been employed for posterior sampling with promising results. However, such methods are not yet for use with large-scale tomographic imaging applications. On the other hand, empirical sampling methods may be computationally feasible for large-scale imaging systems and enable uncertainty quantification for practical applications. Empirical sampling involves solving a regularized inverse problem within a stochastic optimization framework to obtain alternate data-consistent solutions. In this work, a new empirical sampling method is proposed that computes multiple solutions of a tomographic inverse problem that are consistent with the same acquired measurement data. The method operates by repeatedly solving an optimization problem in the latent space of a style-based generative adversarial network (StyleGAN), and was inspired by the Photo Upsampling via Latent Space Exploration (PULSE) method that was developed for super-resolution tasks. The proposed method is demonstrated and analyzed via numerical studies that involve two stylized tomographic imaging modalities. These studies establish the ability of the method to perform efficient empirical sampling and uncertainty quantification.