论文标题

一种深度学习方法,用于数字色膜的数字颜色重建

A Deep Learning Approach for Digital Color Reconstruction of Lenticular Films

论文作者

D'Aronco, Stefano, Trumpy, Giorgio, Pfluger, David, Wegner, Jan Dirk

论文摘要

我们提出了对伪像的强大的历史膜膜的第一个准确的数字化和颜色重建过程。胸膜膜出现在1920年代,并且是允许捕获运动中全彩信息的第一批技术之一。该技术利用了在膜表面上浮雕的RGB过滤器和圆柱形易位,以在图像的水平空间尺寸中编码颜色。为了投影图片,使用适当的模拟设备对编码过程进行了逆转。在这项工作中,我们引入了一条自动化的,完全数字管道,以处理凸状膜的扫描并为图像增色。我们的方法将深度学习与基于模型的方法融合在一起,以最大程度地提高性能,同时确保重建的彩色图像如实匹配编码的颜色信息。 Our model employs different strategies to achieve an effective color reconstruction, in particular (i) we use data augmentation to create a robust lenticule segmentation network, (ii) we fit the lenticules raster prediction to obtain a precise vectorial lenticule localization, and (iii) we train a colorization network that predicts interpolation coefficients in order to obtain a truthful colorization.我们验证了毛线膜数据集上提出的方法,并将其与其他方法进行比较。由于没有彩色的地面图作为参考,因此我们进行了一项用户研究,以主观的方式验证我们的方法。研究结果表明,相对于其他现有和基线方法,提出的方法在很大程度上是优选的。

We propose the first accurate digitization and color reconstruction process for historical lenticular film that is robust to artifacts. Lenticular films emerged in the 1920s and were one of the first technologies that permitted to capture full color information in motion. The technology leverages an RGB filter and cylindrical lenticules embossed on the film surface to encode the color in the horizontal spatial dimension of the image. To project the pictures the encoding process was reversed using an appropriate analog device. In this work, we introduce an automated, fully digital pipeline to process the scan of lenticular films and colorize the image. Our method merges deep learning with a model-based approach in order to maximize the performance while making sure that the reconstructed colored images truthfully match the encoded color information. Our model employs different strategies to achieve an effective color reconstruction, in particular (i) we use data augmentation to create a robust lenticule segmentation network, (ii) we fit the lenticules raster prediction to obtain a precise vectorial lenticule localization, and (iii) we train a colorization network that predicts interpolation coefficients in order to obtain a truthful colorization. We validate the proposed method on a lenticular film dataset and compare it to other approaches. Since no colored groundtruth is available as reference, we conduct a user study to validate our method in a subjective manner. The results of the study show that the proposed method is largely preferred with respect to other existing and baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源