论文标题

与分布约束下的转移匹配

Matching with Transfers under Distributional Constraints

论文作者

Jalota, Devansh, Ostrovsky, Michael, Pavone, Marco

论文摘要

我们研究了具有可转让公用事业(例如劳动力和租赁住房市场)的双向多一部分匹配市场,其中金钱可以在代理之间交换手,但要受到可行分配的分配约束。在这样的市场中,我们建立了平衡布置的效率,该平衡安排由市场两侧的代理之间的分配和转移指定,并研究存在平衡存在的分布约束和代理偏好的条件,并且可以有效地计算出来。为此,我们首先考虑机构数量(例如,劳动力市场中的公司)是一个设置,并表明存在均衡安排,而与约束结构的性质或代理人的喜好无关。但是,即使每一侧的代理在另一侧具有线性(或可分离)的偏好时,在具有多个机构的市场中,平衡安排也可能不存在。因此,对于具有线性偏好的市场,我们研究了使用线性编程二元性来保证存在均衡的约束结构的足够条件。我们的线性编程方法不仅将Shapley和Shubik(1971)的一对一匹配设置推广到分布限制下的多对一匹配设置,而且还提供了一种有效地计算市场均衡的方法。

We study two-sided many-to-one matching markets with transferable utilities, e.g., labor and rental housing markets, in which money can exchange hands between agents, subject to distributional constraints on the set of feasible allocations. In such markets, we establish the efficiency of equilibrium arrangements, specified by an assignment and transfers between agents on the two sides of the market, and study the conditions on the distributional constraints and agent preferences under which equilibria exist and can be computed efficiently. To this end, we first consider the setting when the number of institutions (e.g., firms in a labor market) is one and show that equilibrium arrangements exist irrespective of the nature of the constraint structure or the agents' preferences. However, equilibrium arrangements may not exist in markets with multiple institutions even when agents on each side have linear (or additively separable) preferences over agents on the other side. Thus, for markets with linear preferences, we study sufficient conditions on the constraint structure that guarantee the existence of equilibria using linear programming duality. Our linear programming approach not only generalizes that of Shapley and Shubik (1971) in the one-to-one matching setting to the many-to-one matching setting under distributional constraints but also provides a method to compute market equilibria efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源