论文标题
多体定位过渡的初始状态依赖性动力学
Initial State Dependent Dynamics Across Many-body Localization Transition
论文作者
论文摘要
我们研究了具有多个旋转费用的一维一个维度系统中多体定位(MBL)跃迁跨多体定位(MBL)跃迁的动力学。我们在密度配置文件中考虑了大量的初始状态,这些初始状态为以扭结数的数量,$ n_ {kinks} $。在MBL过渡的离域侧,随着$ n_ {kinks} $的增加,动力学变得更快,从而使衰减指数($γ$)在密度不平衡中增加,而随着$ n_ {kinks} $的增加而增加。均方根位移的生长指数显示了幂律行为$ \ langle x^2(t)\ rangle \ sim t^β$在长期限制中,远比$β\ sim2γ$的$β\ sim2γ$在电荷密度波浪状态下的指数$γ$大得多。随着疾病强度的增加,在某些危险障碍处增加了$γ_{n_ {kink}} \ rightarrow 0 $,$ h_ {n_ {kinks}} $,这是$ n_ {kinks} $的单调增加的功能。一个1键状态总是低估了MBL过渡发生的混乱值,但$ H_ {1-KINK} $与MBL相位前的次置阶段的开始相吻合。这与1键状态的接口扩展的动力学一致。我们表明,双方纠缠熵不仅在MBL阶段,而且在DELACALISE阶段,而且在两个阶段,系数$ A $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a a $ a c $ n_ {kinkinks} $以及与交互强度$ v $ v $ v $。我们解释了动态对扭结数量的这种依赖性,即在相互作用的汉密尔顿相互作用的特征性的初始状态的归一化参与率方面。
We investigate quench dynamics across many-body localization (MBL) transition in an interacting one dimensional system of spinless fermions with aperiodic potential. We consider a large number of initial states characterized by the number of kinks, $N_{kinks}$, in the density profile. On the delocalized side of the MBL transition the dynamics becomes faster with increase in $N_{kinks}$ such that the decay exponent, $γ$, in the density imbalance increases with increase in $N_{kinks}$. The growth exponent of the mean square displacement which shows a power-law behaviour $\langle x^2(t) \rangle \sim t^β$ in the long time limit is much larger than the exponent $γ$ for 1-kink and other low kink states though $β\sim 2γ$ for a charge density wave state. As the disorder strength increases $γ_{N_{kink}} \rightarrow 0$ at some critical disorder, $h_{N_{kinks}}$ which is a monotonically increasing function of $N_{kinks}$. A 1-kink state always underestimates the value of disorder at which the MBL transition takes place but $h_{1-kink}$ coincides with the onset of the sub-diffusive phase preceding the MBL phase. This is consistent with the dynamics of interface broadening for the 1-kink state. We show that the bipartite entanglement entropy has a logarithmic growth $a \ln(Vt)$ not only in the MBL phase but also in the delocalised phase and in both the phases the coefficient $a$ increases with $N_{kinks}$ as well as with the interaction strength $V$. We explain this dependence of dynamics on the number of kinks in terms of the normalized participation ratio of initial states in the eigenbasis of the interacting Hamiltonian.