论文标题

自动驾驶的道路网络的行为语义风景描述(BSSD)

Behavior-Semantic Scenery Description (BSSD) of Road Networks for Automated Driving

论文作者

Lippert, Moritz, Glatzki, Felix, Winner, Hermann

论文摘要

高度自动化车辆(HAV)的安全批准在经济上是不可行的。为了验证和验证,必须描述开发过程中HAV的预期行为以证明安全。对这种行为的需求来自交通规则,这些规则是由车辆周围的当前风景实例化(例如,交通标志或路标标记)。操作设计域(ODD)指定了HAV可能操作的风景,但是当前的描述无法明确表示风景的相关行为需求。我们为行为语义风景描述(BSSD)提出了一种新方法,以描述当前风景的行为空间。行为空间代表了法律可能行为的界定。 BSSD明确将风景与HAV的行为需求联系起来。基于确定的方法和这种方法的挑战,我们得出了对完整道路网络描述的通用结构的要求。确定了代表风景行为空间的所有必需元素。在现实世界中,我们提出了集成到HD-MAP框架LANElet2中的BSSD实例,以证明描述的适用性。提出的方法通过缩小车辆必须在奇数内限制的知识差距来支持HAV的开发,测试和操作。

The safety approval of Highly Automated Vehicles (HAV) is economically infeasible with current approaches. For verification and validation, it is essential to describe the intended behavior of an HAV in the development process in order to prove safety. The demand for this behavior comes from the traffic rules which are instantiated by the present scenery around the vehicle (e.g. traffic signs or road markings). The Operational Design Domain (ODD) specifies the scenery in which an HAV may operate, but current descriptions fail to explicitly represent the associated behavioral demand of the scenery. We propose a new approach for a Behavior-Semantic Scenery Description (BSSD) in order to describe the behavior space of a present scenery. A behavior space represents the delimitation of the legally possible behavior. The BSSD explicitly links the scenery with the behavioral demand for HAV. Based on identified goals and challenges for such an approach, we derive requirements for a generic structure of the description for complete road networks. All required elements to represent the behavior space of the scenery are identified. Within real world examples, we present an instance of the BSSD integrated into the HD-map framework Lanelet2 to prove the applicability of the description. The presented approach supports development, test and operation of HAV by closing the knowledge gap of where a vehicle has to behave in which limits within an ODD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源