论文标题

拉丁广场的子结构

Substructures in Latin squares

论文作者

Kwan, Matthew, Sah, Ashwin, Sawhney, Mehtaab, Simkin, Michael

论文摘要

我们证明了有关拉丁正方形的子结构的几个结果。首先,我们解释了如何将我们最近在高湾施坦纳三重系统上的工作调整到拉丁正方形的设置中,从而解决了一系列的猜想,即存在任意高腰围的拉丁正方形。结果,我们看到订单的数量 - $ n $拉丁正方形,没有插度(即否$ 2 \ times2 $ latin subsquare)至少是$(e^{ - 9/4} n-o(n)n-o(n))^{n^{2}}} $。同等地,$ \ m athbb {p} \ left [\ mathbf {n} = 0 \ right] \ ge e^{ - n^{2}/4-o(n^{2})= e^{ - (1+o(1+o(1+o(1+o(1+o(1+o(1+o(1+o))统一的随机订单中的插入数量 - $ n $拉丁广场。 实际上,扩展了关南,SAH和Sawhney的最新工作,我们解决了随机拉丁正方形中插量的一般大型VIRIDATE问题,直到指数中的不变因素:对于任何常数$ 0 <δ\ le1 $,我们都有$ \ MATHBB {p} [\ MATHBF {n} \ le(1-δ)\ Mathbb {e} \ Mathbf {n}] = \ exp(-θ(n^{2}}))$,对于任何常数$δ> 0 $我们有$ \ mathbb {p} [\ Mathbf {n} \ ge(1+δ)\ Mathbb {e} \ MathBf {n}] = \ exp(-θ(n^{4/3} \ log log n))$。 最后,作为一些新的通用工具用于研究随机拉丁平方的子结构的应用,我们表明,几乎所有顺序 - $ n $拉丁平方,cuboctahedra的数量(即,可能是否定的$ 2 $ 2 $ suoldatrices的成对成对的数量,具有相同的符号安排)是$ n^$ n^$ n^^{4}的可能性,正如Gowers和long所观察到的那样,这个数字可以解释为测量``与拉丁正方形相关的准群''的``联想性如何''。

We prove several results about substructures in Latin squares. First, we explain how to adapt our recent work on high-girth Steiner triple systems to the setting of Latin squares, resolving a conjecture of Linial that there exist Latin squares with arbitrarily high girth. As a consequence, we see that the number of order-$n$ Latin squares with no intercalate (i.e., no $2\times2$ Latin subsquare) is at least $(e^{-9/4}n-o(n))^{n^{2}}$. Equivalently, $\mathbb{P}\left[\mathbf{N}=0\right]\ge e^{-n^{2}/4-o(n^{2})}=e^{-(1+o(1))\mathbb{E}\mathbf{N}}$, where $\mathbf{N}$ is the number of intercalates in a uniformly random order-$n$ Latin square. In fact, extending recent work of Kwan, Sah, and Sawhney, we resolve the general large-deviation problem for intercalates in random Latin squares, up to constant factors in the exponent: for any constant $0<δ\le1$ we have $\mathbb{P}[\mathbf{N}\le(1-δ)\mathbb{E}\mathbf{N}]=\exp(-Θ(n^{2}))$ and for any constant $δ>0$ we have $\mathbb{P}[\mathbf{N}\ge(1+δ)\mathbb{E}\mathbf{N}]=\exp(-Θ(n^{4/3}\log n))$. Finally, as an application of some new general tools for studying substructures in random Latin squares, we show that in almost all order-$n$ Latin squares, the number of cuboctahedra (i.e., the number of pairs of possibly degenerate $2\times2$ submatrices with the same arrangement of symbols) is of order $n^{4}$, which is the minimum possible. As observed by Gowers and Long, this number can be interpreted as measuring ``how associative'' the quasigroup associated with the Latin square is.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源