论文标题

基于傅立叶测量的基于电视的样条重建:基于网格的方法的独特性和收敛性

TV-based Spline Reconstruction with Fourier Measurements: Uniqueness and Convergence of Grid-Based Methods

论文作者

Debarre, Thomas, Denoyelle, Quentin, Fageot, Julien

论文摘要

我们研究从其低频信息中恢复分段多项式周期函数的问题。这意味着我们只能访问地面真相的傅立叶样本的可能损坏的版本,直至最大截止频率$ k_c $。重建任务指定为涉及$ m $ ther订单衍生衍生物正则操作员$ \ mathrm {l} = \ mathrm {d}^m $的总差异(TV)正则化(TV)正则化(TV)的优化问题。 $ m \ geq 1 $订单确定了重建的分段多项式样条的程度,而众所周知的电视正规化规范可以促进稀疏性,保证了少数零件。我们表明,我们的优化问题的解决方案始终是独特的,据我们所知,这是第一个用于基于电视的问题的问题。此外,我们表明该解决方案是一个定期样条,与正则化操作员$ \ mathrm {l} $相匹配,其结数的上限为$ 2 k_c $。然后,我们考虑在均匀$ \ mathrm {l} $ -spline的空间中基于网格的优化问题的离散化。在理论方面,我们表明,随着网格大小的消失,离散问题的任何解决方案均均匀地收敛于无网状问题的独特解决方案。最后,在算法方面,我们提出了一种基于B的基于B的算法来解决基于网格的问题,并通过实验证明了其数值可行性。在这两个方面,我们都利用了原始问题解决方案的独特性。

We study the problem of recovering piecewise-polynomial periodic functions from their low-frequency information. This means that we only have access to possibly corrupted versions of the Fourier samples of the ground truth up to a maximum cutoff frequency $K_c$. The reconstruction task is specified as an optimization problem with total-variation (TV) regularization (in the sense of measures) involving the $M$-th order derivative regularization operator $\mathrm{L} = \mathrm{D}^M$. The order $M \geq 1$ determines the degree of the reconstructed piecewise polynomial spline, whereas the TV regularization norm, which is known to promote sparsity, guarantees a small number of pieces. We show that the solution of our optimization problem is always unique, which, to the best of our knowledge, is a first for TV-based problems. Moreover, we show that this solution is a periodic spline matched to the regularization operator $\mathrm{L}$ whose number of knots is upper-bounded by $2 K_c$. We then consider the grid-based discretization of our optimization problem in the space of uniform $\mathrm{L}$-splines. On the theoretical side, we show that any sequence of solutions of the discretized problem converges uniformly to the unique solution of the gridless problem as the grid size vanishes. Finally, on the algorithmic side, we propose a B-spline-based algorithm to solve the grid-based problem, and we demonstrate its numerical feasibility experimentally. On both of these aspects, we leverage the uniqueness of the solution of the original problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源