论文标题

关于高级halosphers的密度

On denseness of horospheres in higher rank homogeneous spaces

论文作者

Landesberg, Or, Oh, Hee

论文摘要

令$ g $为连接的半胶实代数组,$γ<g $为zariski密集的离散子组。令$ n $表示$ g $的最大halosphical子组,$ p = man $最小抛物线子组,是$ n $的标准化器。令$ \ Mathcal {e} $表示$γ\ Backslash G $的唯一$ P $ - 米数子集,让$ \ Mathcal {e} _0 $为$ p^\ circ $ -minimal subset。我们考虑了furstenberg边界中的h鼠极限点$ g/p $的概念,并表明以下含量是等于\ Mathcal {e} {e} _0 $:(1)$ gp \ in g/p $中的任何$ [g] \ in g/p $中的等效物; (2)$ [g] nm $在$ \ mathcal {e} $中密集; (3)$ [g] n $在$ \ MATHCAL {E} _0 $中密集。 (1)和(2)的等效性是由于排名中的Dal'bo引起的。我们还观察到,与凸的cooCompact组排名一组不同,$ nm $ $ \ Mathcal {e} $的$ nm $ - 最小程度不在一般的Anosov同质空间中。

Let $ G $ be a connected, semisimple real algebraic group and $Γ< G$ be a Zariski dense discrete subgroup. Let $N$ denote a maximal horospherical subgroup of $G$, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of $N$. Let $\mathcal{E}$ denote the unique $P$-minimal subset of $Γ\backslash G$ and let $\mathcal{E}_0$ be a $P^\circ$-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]\in \mathcal{E}_0$: (1) $gP\in G/P$ is a horospherical limit point; (2) $[g]NM$ is dense in $\mathcal{E}$; (3) $[g]N$ is dense in $\mathcal{E}_0$. The equivalence of (1) and (2) is due to Dal'bo in the rank one case. We also observe that unlike convex cocompact groups of rank one Lie groups, the $NM$-minimality of $\mathcal{E}$ does not hold in a general Anosov homogeneous space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源