论文标题
SUPA:用于粒子物理机器学习的轻量级诊断模拟器
SUPA: A Lightweight Diagnostic Simulator for Machine Learning in Particle Physics
论文作者
论文摘要
深度学习方法已在高能物理学中越来越受欢迎,可以快速建模探测器中的粒子阵雨。详细的仿真框架(例如Gold Standard Geant4)在计算上是密集的,并且当前的深层生成体系结构在详细模拟的离散,较低分辨率版本上工作。目前,在较高空间分辨率上工作的模型的开发受到了完整模拟数据的复杂性以及缺乏更简单,更容易解释的基准的复杂性。我们的贡献是Supa,Supa,替代粒子传播模拟器,一种算法和软件包,用于通过模拟物质中的简化粒子传播,散射和淋浴开发来生成数据。与Geant4相比,这一代非常快速且易于使用,但仍然表现出详细模拟的关键特征和挑战。我们通过表明来自模拟器数据的生成模型的性能反映了使用Geant4生成的数据集的性能来支持这一主张。所提出的模拟器每秒在台式机上产生数千个粒子阵雨,速度高达6阶在GEANT4上,并存储有关淋浴传播的详细几何信息。 SUPA为设置初始条件和定义模型开发的多个基准提供了更大的灵活性。此外,将粒子阵雨解释为点云会创建与几何机器学习的连接,并为该领域提供具有挑战性的新数据集。 SUPA的代码可从https://github.com/itsdaniele/supa获得。
Deep learning methods have gained popularity in high energy physics for fast modeling of particle showers in detectors. Detailed simulation frameworks such as the gold standard Geant4 are computationally intensive, and current deep generative architectures work on discretized, lower resolution versions of the detailed simulation. The development of models that work at higher spatial resolutions is currently hindered by the complexity of the full simulation data, and by the lack of simpler, more interpretable benchmarks. Our contribution is SUPA, the SUrrogate PArticle propagation simulator, an algorithm and software package for generating data by simulating simplified particle propagation, scattering and shower development in matter. The generation is extremely fast and easy to use compared to Geant4, but still exhibits the key characteristics and challenges of the detailed simulation. We support this claim experimentally by showing that performance of generative models on data from our simulator reflects the performance on a dataset generated with Geant4. The proposed simulator generates thousands of particle showers per second on a desktop machine, a speed up of up to 6 orders of magnitudes over Geant4, and stores detailed geometric information about the shower propagation. SUPA provides much greater flexibility for setting initial conditions and defining multiple benchmarks for the development of models. Moreover, interpreting particle showers as point clouds creates a connection to geometric machine learning and provides challenging and fundamentally new datasets for the field. The code for SUPA is available at https://github.com/itsdaniele/SUPA.