论文标题
- 鲁kies的混合物:通过预测Relu输出来保存DNN计算
Mixture-of-Rookies: Saving DNN Computations by Predicting ReLU Outputs
论文作者
论文摘要
深神经网络(DNN)广泛用于许多应用领域。但是,它们需要大量的计算和内存访问才能提供出色的准确性。在本文中,我们提出了一个方案,以预测每个relu激活的神经元的输出是零还是正数,以跳过可能输出零的神经元的计算。我们的预测因子被称为“鲁k混合物”,结合了两个廉价的组件。第一个利用了二元化(1位)和完全精确(8位)点产物之间的高线性相关性,而第二个成分簇则将神经元趋向于同时输出零。我们根据角度分析提出了一种新型的聚类方案,因为两个向量的点产物的符号取决于它们之间的角度的余弦。我们在最先进的DNN加速器上实现混合零输出预测器。实验结果表明,我们的计划引入了5.3%的小面积,同时达到1.2倍的速度,并将一组不同的DNN的速度降低16.5%。
Deep Neural Networks (DNNs) are widely used in many applications domains. However, they require a vast amount of computations and memory accesses to deliver outstanding accuracy. In this paper, we propose a scheme to predict whether the output of each ReLu activated neuron will be a zero or a positive number in order to skip the computation of those neurons that will likely output a zero. Our predictor, named Mixture-of-Rookies, combines two inexpensive components. The first one exploits the high linear correlation between binarized (1-bit) and full-precision (8-bit) dot products, whereas the second component clusters together neurons that tend to output zero at the same time. We propose a novel clustering scheme based on the analysis of angles, as the sign of the dot product of two vectors depends on the cosine of the angle between them. We implement our hybrid zero output predictor on top of a state-of-the-art DNN accelerator. Experimental results show that our scheme introduces a small area overhead of 5.3% while achieving a speedup of 1.2x and reducing energy consumption by 16.5% on average for a set of diverse DNNs.