论文标题
使用自动助力最小二乘的线性高斯系统的噪声协方差是无法唯一识别的
The Noise Covariances of Linear Gaussian Systems with Unknown Inputs Are Not Uniquely Identifiable Using Autocovariance Least-squares
论文作者
论文摘要
具有任意未知输入的线性高斯系统的最佳过滤中的现有作品在滤波器设计中对噪声协方差的理想了解。这是不切实际的,并提出了一个问题,即在什么条件下以及在什么条件下可以识别具有任意输入的线性高斯系统的噪声协方差。本文使用基于相关的自动配置最小二乘(ALS)方法来考虑上述可识别性问题。特别是,对于ALS框架,我们证明(i)过程噪声协方差Q和测量噪声协方差r不能唯一地共同确定; (ii)Q和r当对方已知时既不是唯一的识别。这不仅有助于我们更好地了解未知输入下现有过滤框架的适用性(因为几乎所有人都需要对噪声协方差的完美了解),而且还要求在未知输入下进一步研究替代性和更可行的噪声协方差方法。特别是,使用其他基于相关的方法可以唯一地识别噪声协方差尚待探讨。我们还有兴趣将正则化用于未知输入下的噪声协方差估计,并研究协方差估计的相关属性保证。以上主题是我们当前和未来工作的主要主题。
Existing works in optimal filtering for linear Gaussian systems with arbitrary unknown inputs assume perfect knowledge of the noise covariances in the filter design. This is impractical and raises the question of whether and under what conditions one can identify the noise covariances of linear Gaussian systems with arbitrary unknown inputs. This paper considers the above identifiability question using the correlation-based autocovariance least-squares (ALS) approach. In particular, for the ALS framework, we prove that (i) the process noise covariance Q and the measurement noise covariance R cannot be uniquely jointly identified; (ii) neither Q nor R is uniquely identifiable, when the other is known. This not only helps us to have a better understanding of the applicability of existing filtering frameworks under unknown inputs (since almost all of them require perfect knowledge of the noise covariances) but also calls for further investigation of alternative and more viable noise covariance methods under unknown inputs. Especially, it remains to be explored whether the noise covariances are uniquely identifiable using other correlation-based methods. We are also interested to use regularization for noise covariance estimation under unknown inputs, and investigate the relevant property guarantees for the covariance estimates. The above topics are the main subject of our current and future work.