论文标题

与归因对齐的协作过滤,以基于审查的非重叠跨域建议

Collaborative Filtering with Attribution Alignment for Review-based Non-overlapped Cross Domain Recommendation

论文作者

Liu, Weiming, Zheng, Xiaolin, Hu, Mengling, Chen, Chaochao

论文摘要

跨域建议(CDR)已被广泛研究以利用不同的领域知识来解决建议系统中的数据稀疏性和冷启动问题。在本文中,我们重点介绍了基于审查的非裁决建议(RNCDR)问题。由于两个主要方面,即目标域上只有积极的用户项目评级,并且在不同域中没有重叠的用户,因此问题通常是存在的,并且具有挑战性。大多数以前的CDR方法无法很好地解决RNCDR问题,因为(1)他们无法有效地将审核与其他信息(例如ID或评级)相结合以获取表达用户或项目嵌入,(2)它们无法减少对用户和项目的域差异。为了填补这一空白,我们提出了使用归因对齐模型(CFAA)的协作过滤,这是RNCDR问题的跨域推荐框架。 CFAA包括两个主要模块,即评级预测模块和嵌入归因对齐模块。前者旨在共同挖掘审查,单速ID和多速历史评级,以产生表达的用户和物品嵌入。后来包括垂直归因对准和水平归因对齐,倾向于根据多种观点减少差异。我们对Douban和Amazon数据集的实证研究表明,CFAA在RNCDR设置下的表现明显优于最先进的模型。

Cross-Domain Recommendation (CDR) has been popularly studied to utilize different domain knowledge to solve the data sparsity and cold-start problem in recommender systems. In this paper, we focus on the Review-based Non-overlapped Recommendation (RNCDR) problem. The problem is commonly-existed and challenging due to two main aspects, i.e, there are only positive user-item ratings on the target domain and there is no overlapped user across different domains. Most previous CDR approaches cannot solve the RNCDR problem well, since (1) they cannot effectively combine review with other information (e.g., ID or ratings) to obtain expressive user or item embedding, (2) they cannot reduce the domain discrepancy on users and items. To fill this gap, we propose Collaborative Filtering with Attribution Alignment model (CFAA), a cross-domain recommendation framework for the RNCDR problem. CFAA includes two main modules, i.e., rating prediction module and embedding attribution alignment module. The former aims to jointly mine review, one-hot ID, and multi-hot historical ratings to generate expressive user and item embeddings. The later includes vertical attribution alignment and horizontal attribution alignment, tending to reduce the discrepancy based on multiple perspectives. Our empirical study on Douban and Amazon datasets demonstrates that CFAA significantly outperforms the state-of-the-art models under the RNCDR setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源