论文标题

发现没有压力数据的可塑性模型

Discovering plasticity models without stress data

论文作者

Flaschel, Moritz, Kumar, Siddhant, De Lorenzis, Laura

论文摘要

我们为数据驱动的物质定律的自动发现提出了一种新的方法,我们称之为欧几里得(有效的无监督的本构法律识别和发现),我们在此将其应用于发现可塑性模型的发现,包括任意形状的产量表面和同型和/或基因性硬化法律。该方法是无监督的,即,它不需要压力数据,而只需要全场位移和全球力数据。它提供了可解释的模型,即,通过稀疏回归候选功能目录的稀疏回归发现的模型表达式所体现的模型;它是一声的,即发现只需要一个实验。材料模型库是通过用傅立叶系列扩展产量函数来构建的,而各向同性和运动学硬化是通过假设产量函数依赖于随着塑性变形而演变的内部历史变量来介绍的。为了选择最相关的傅立叶模式并确定硬化行为,Euclid采用物理知识,即控制发现的优化问题,可以在域中和域的负载边界中执行平衡约束。促进正则化的稀疏性可以生成一组解决方案,从而自动选择具有低成本和高简约性的解决方案。通过虚拟实验,我们证明了欧几里得准确发现几种塑性屈服表面和硬化机制的能力。

We propose a new approach for data-driven automated discovery of material laws, which we call EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery), and we apply it here to the discovery of plasticity models, including arbitrarily shaped yield surfaces and isotropic and/or kinematic hardening laws. The approach is unsupervised, i.e., it requires no stress data but only full-field displacement and global force data; it delivers interpretable models, i.e., models that are embodied by parsimonious mathematical expressions discovered through sparse regression of a potentially large catalogue of candidate functions; it is one-shot, i.e., discovery only needs one experiment. The material model library is constructed by expanding the yield function with a Fourier series, whereas isotropic and kinematic hardening are introduced by assuming a yield function dependency on internal history variables that evolve with the plastic deformation. For selecting the most relevant Fourier modes and identifying the hardening behavior, EUCLID employs physics knowledge, i.e., the optimization problem that governs the discovery enforces the equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity promoting regularization is deployed to generate a set of solutions out of which a solution with low cost and high parsimony is automatically selected. Through virtual experiments, we demonstrate the ability of EUCLID to accurately discover several plastic yield surfaces and hardening mechanisms of different complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源