论文标题

一致性和多样性引起的人类运动细分

Consistency and Diversity induced Human Motion Segmentation

论文作者

Zhou, Tao, Fu, Huazhu, Gong, Chen, Shao, Ling, Porikli, Fatih, Ling, Haibin, Shen, Jianbing

论文摘要

子空间聚类是一种经典技术,已被广泛用于人类运动分割和其他相关任务。但是,现有的分割方法通常在没有先验知识的指导的情况下聚集数据,从而导致细分结果不令人满意。为此,我们提出了一种新颖的一致性和多样性引起的人类运动分割(CDMS)算法。具体而言,我们的模型将源数据和目标数据分配到不同的多层特征空间中,其中传输子空间学习在不同的层上进行以捕获多层信息。制定了多种一致性学习策略,以减少源数据和目标数据之间的域间隙。这样,可以同时探索特定领域的知识和域不变属性。此外,引入了基于希尔伯特·施密特独立标准(HSIC)的新颖限制,以确保多级子空间表示的多样性,这使得能够探索多级表示的互补性以提高传递学习绩效。此外,为了保留时间相关性,对学习的表示系数和源数据的多层表示施加了增强的图形正规化程序。可以使用乘数(ADMM)算法的交替方向方法有效地解决了所提出的模型。公共人类运动数据集的广泛实验结果证明了我们方法对几种最新方法的有效性。

Subspace clustering is a classical technique that has been widely used for human motion segmentation and other related tasks. However, existing segmentation methods often cluster data without guidance from prior knowledge, resulting in unsatisfactory segmentation results. To this end, we propose a novel Consistency and Diversity induced human Motion Segmentation (CDMS) algorithm. Specifically, our model factorizes the source and target data into distinct multi-layer feature spaces, in which transfer subspace learning is conducted on different layers to capture multi-level information. A multi-mutual consistency learning strategy is carried out to reduce the domain gap between the source and target data. In this way, the domain-specific knowledge and domain-invariant properties can be explored simultaneously. Besides, a novel constraint based on the Hilbert Schmidt Independence Criterion (HSIC) is introduced to ensure the diversity of multi-level subspace representations, which enables the complementarity of multi-level representations to be explored to boost the transfer learning performance. Moreover, to preserve the temporal correlations, an enhanced graph regularizer is imposed on the learned representation coefficients and the multi-level representations of the source data. The proposed model can be efficiently solved using the Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experimental results on public human motion datasets demonstrate the effectiveness of our method against several state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源