论文标题
金属:大型麦哲伦云哈勃计划中的金属进化,运输和丰度。 iii。星际耗竭,尘埃对金属和尘埃气比的比率与金属性
METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble program. III. Interstellar Depletions, Dust-to-Metal, and Dust-to-Gas Ratios Versus Metallicity
论文作者
论文摘要
星际耗竭,粉尘到气体(d/g)和尘埃对金属(D/M)比的金属性和气体密度依赖性对我们可以准确地追踪宇宙的化学富集具有重要意义。通过将FIR粉尘发射作为ISM的示踪剂;或通过使用阻尼的Lyman-Alpha系统(DLA)的光谱法测量各种红移的化学丰度。我们收集并比较以银河系(MW),LMC(Z = 0.5 ZSUN)和SMC(Z = 0.2 ZSUN)的耗尽测量的大量样本。不同元素的耗竭之间的关系在这三个星系之间不会发生强烈的变化,这意味着丰度比应准确地降低到20%的太阳金属性。从耗尽中,我们得出D/G和D/M。 D/G随着密度而增加,与更有效的气相金属的积聚在密度ISM中的粉尘晶粒上。对于log n(h)> 21 cm^-2,金属示踪剂(S,Zn)的耗竭超过-0.5 DEX,即使在20%的太阳金属度处也是如此。金属的气体分数从MW增加到LMC(因子3)和SMC(因子6),补偿了总重元素丰度的减少,并导致这三个星系具有相同的中性气相金属率。源自耗竭的D/G比从FIR,21 cm和CO发射的D/G高的d/g倍数高2(SMC),这可能是由于尘埃不透明度上的不确定性以及碳和氧气的消耗所致。
The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe; either by using FIR dust emission as a tracer of the ISM; or by using spectroscopy of damped Lyman-alpha systems (DLAs) to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), LMC (Z=0.5 Zsun), and SMC (Z=0.2 Zsun). The relation between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N(H) > 21 cm^-2, the depletion of metallicity tracers (S, Zn) exceeds -0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6), compensating the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are a factor of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen.