论文标题

耦合自旋电子动力学中的新兴非亚伯仪理论

Emergent Non-Abelian Gauge Theory in Coupled Spin-Electron Dynamics

论文作者

Lenzing, Nicolas, Lichtenstein, Alexander I., Potthoff, Michael

论文摘要

时间尺度的明确分离,衡量“慢”和“快速”自由度的动态通常是出现独立低能理论的先决条件。在这里,我们考虑(慢)经典旋转交换,耦合到(快速)传导电子的紧密结合系统。有效的运动方程是在任何时间瞬间$ t $ the Electron系统的量子状态的限制下得出的,均位于$ n $ dimensional的低能量子空间中,用于$ t $的相应旋转配置。有效的低能理论可以直接展现自身,并以跨越瞬时低能部门的基础的任意性给予的非亚伯仪表理论的形式。自动限制在经典旋转的运动方程式中产生量规协变的自旋曲率张量。在$ n> 1 $的非亚伯理论中,与$ n = 1 $绝热旋转动力学理论相反,即使是时间反转对称系统,自旋晶曲率也通常是非零的。其以电子状态表示的期望值是规范不变的,并产生了额外的{\ em几何}自旋扭矩。除了异常的进动外,$ n \ ge 2 $理论还捕获了旋转的坚果运动,通常被认为是延迟效果。对于具有单个经典旋转的最小模型的原理证明数值计算证明了这一点。 $ n = 1 $ n = 1 $绝热理论破裂的参数制度已经为$ n = 2 $,我们找到了与从完整(无约束)理论获得的结果的良好一致性。

A clear separation of the time scales governing the dynamics of "slow" and "fast" degrees of freedom often serves as a prerequisite for the emergence of an independent low-energy theory. Here, we consider (slow) classical spins exchange coupled to a tight-binding system of (fast) conduction electrons. The effective equations of motion are derived under the constraint that the quantum state of the electron system at any instant of time $t$ lies in the $n$-dimensional low-energy subspace for the corresponding spin configuration at $t$. The effective low-energy theory unfolds itself straightforwardly and takes the form of a non-abelian gauge theory with the gauge freedom given by the arbitrariness of the basis spanning the instantaneous low-energy sector. The holonomic constraint generates a gauge covariant spin-Berry curvature tensor in the equations of motion for the classical spins. In the non-abelian theory for $n>1$, opposed to the $n=1$ adiabatic spin dynamics theory, the spin-Berry curvature is generically nonzero, even for time-reversal symmetric systems. Its expectation value with the representation of the electron state is gauge invariant and gives rise to an additional {\em geometrical} spin torque. Besides anomalous precession, the $n\ge 2$ theory also captures the spin nutational motion, which is usually considered as a retardation effect. This is demonstrated by proof-of-principle numerical calculations for a minimal model with a single classical spin. Already for $n=2$ and in parameter regimes where the $n=1$ adiabatic theory breaks down, we find good agreement with results obtained from the full (unconstrained) theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源