论文标题

减少自动编码器的瓶颈表示的冗余

Reducing Redundancy in the Bottleneck Representation of the Autoencoders

论文作者

Laakom, Firas, Raitoharju, Jenni, Iosifidis, Alexandros, Gabbouj, Moncef

论文摘要

自动编码器是一种无监督的神经网络,可用于求解各种任务,例如降低尺寸降低,图像压缩和图像denoising。 AE有两个目标:(i)使用编码器将原始输入压缩到网络拓扑瓶颈处的低维空间,(ii)使用解码器重建瓶颈上表示的输入。通过最小化基于失真的损失,共同优化编码器和解码器,该损失隐含地迫使模型仅保留重建并减少冗余所需的输入数据的变化。在本文中,我们提出了一项计划,以明确惩罚瓶颈代表中的特征冗余。为此,我们基于神经元的成对相关性提出了一个额外的损失项,该神经元的成对相关性补充了标准重建损失,迫使编码者学习输入的更多样化和更丰富的表示。我们跨不同任务测试了我们的方法:使用三个不同的数据集,使用MNIST数据集的图像压缩以及使用Fashion MNIST进行图像Denoising。实验结果表明,与标准AE损失相比,提出的损失始终导致较高的性能。

Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks, e.g., dimensionality reduction, image compression, and image denoising. An AE has two goals: (i) compress the original input to a low-dimensional space at the bottleneck of the network topology using an encoder, (ii) reconstruct the input from the representation at the bottleneck using a decoder. Both encoder and decoder are optimized jointly by minimizing a distortion-based loss which implicitly forces the model to keep only those variations of input data that are required to reconstruct the and to reduce redundancies. In this paper, we propose a scheme to explicitly penalize feature redundancies in the bottleneck representation. To this end, we propose an additional loss term, based on the pair-wise correlation of the neurons, which complements the standard reconstruction loss forcing the encoder to learn a more diverse and richer representation of the input. We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST. The experimental results show that the proposed loss leads consistently to superior performance compared to the standard AE loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源