论文标题

探索多核电均匀收敛边界

An Exploration of Multicalibration Uniform Convergence Bounds

论文作者

Rosenberg, Harrison, Bhattacharjee, Robi, Fawaz, Kassem, Jha, Somesh

论文摘要

最近的工作调查了公平机器学习所需的样本复杂性。通过分析给定的预测类别类别的多核电均匀收敛来开发此类样品复杂性最先进的界限。我们提出了一个框架,该框架通过对样品的复杂性进行修复以最小化(ERM)学习,从而产生多核误差统一收敛界限。从这个框架中,我们证明了多核电误差表现出对分类器体系结构以及基础数据分布的依赖性。我们进行实验评估,以研究不同分类器家族的多核电误差的行为。我们将该评估的结果与多核电误差浓度界限进行比较。我们的调查提供了有关算法公平性和多中心误差收敛范围的其他观点。鉴于ERM样本复杂性界限的流行率,我们提出的框架使机器学习实践者可以轻松理解无数分类器体系结构的多核电误差的收敛行为。

Recent works have investigated the sample complexity necessary for fair machine learning. The most advanced of such sample complexity bounds are developed by analyzing multicalibration uniform convergence for a given predictor class. We present a framework which yields multicalibration error uniform convergence bounds by reparametrizing sample complexities for Empirical Risk Minimization (ERM) learning. From this framework, we demonstrate that multicalibration error exhibits dependence on the classifier architecture as well as the underlying data distribution. We perform an experimental evaluation to investigate the behavior of multicalibration error for different families of classifiers. We compare the results of this evaluation to multicalibration error concentration bounds. Our investigation provides additional perspective on both algorithmic fairness and multicalibration error convergence bounds. Given the prevalence of ERM sample complexity bounds, our proposed framework enables machine learning practitioners to easily understand the convergence behavior of multicalibration error for a myriad of classifier architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源