论文标题

CRAT-PRED:使用Crystal Graph卷积神经网络和多头自我注意力的车辆轨迹预测

CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph Convolutional Neural Networks and Multi-Head Self-Attention

论文作者

Schmidt, Julian, Jordan, Julian, Gritschneder, Franz, Dietmayer, Klaus

论文摘要

预测周围车辆的运动对于自动驾驶汽车至关重要,因为它控制着自己的运动计划。当前的最新车辆预测模型在很大程度上依赖地图信息。但是,实际上,此信息并不总是可用。因此,我们提出了Crat-Pred,这是一种基于多模式和非固定化的轨迹预测模型,该模型是专门设计的,旨在有效地模拟车辆之间的社交互动,而无需依赖地图信息。 Crat-Pred应用于源自材料科学领域到车辆预测的图形卷积方法,可以有效利用边缘特征,并将其与多头自我注意力结合使用。与其他无地图方法相比,该模型以明显较低的模型参数来实现最先进的性能。除此之外,我们定量地表明,自我发挥的机制能够学习车辆之间的社交互动,重量代表可测量的相互作用得分。源代码可公开可用。

Predicting the motion of surrounding vehicles is essential for autonomous vehicles, as it governs their own motion plan. Current state-of-the-art vehicle prediction models heavily rely on map information. In reality, however, this information is not always available. We therefore propose CRAT-Pred, a multi-modal and non-rasterization-based trajectory prediction model, specifically designed to effectively model social interactions between vehicles, without relying on map information. CRAT-Pred applies a graph convolution method originating from the field of material science to vehicle prediction, allowing to efficiently leverage edge features, and combines it with multi-head self-attention. Compared to other map-free approaches, the model achieves state-of-the-art performance with a significantly lower number of model parameters. In addition to that, we quantitatively show that the self-attention mechanism is able to learn social interactions between vehicles, with the weights representing a measurable interaction score. The source code is publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源