论文标题

在低温温度下具有互连级别缩放的量子横梁

A quantum dot crossbar with sublinear scaling of interconnects at cryogenic temperature

论文作者

Bavdaz, P. L., Eenink, H. G. J., van Staveren, J., Lodari, M., Almudever, C. G., Clarke, J. S., Sebastiano, F., Veldhorst, M., Scappucci, G.

论文摘要

我们展示了36美元的$ 36栅极电极横梁,该横杆支持648个狭窄通道磁场效应晶体管(FET)用于门定义的量子点,并且在对照线线性增加的情况下,量子点计数的二次增加。该横杆是在工业$^{28} $ SI-MOS堆栈上制造的,在低温温度下显示100%的FET产量。我们观察到较宽的通道设备的阈值电压降低,并获得了在1296个栅极横梁上探测的名义上相同隧道屏障的捏合电压的正态分布。在整个横梁上宏观上,我们的平均捏合度为1.17〜V,标准偏差为46.8 mV,而每个单位电池内的局部差异表示标准偏差为23.1〜mV。这些疾病的潜在景观变化分别转化为测量量子点充电能的1.2和0.6倍。这样的指标为材料和设备优化提供了手段,并用作设计基于易于故障的半导体量子计算的大规模架构的指南。

We demonstrate a 36$\times$36 gate electrode crossbar that supports 648 narrow-channel field effect transistors (FET) for gate-defined quantum dots, with a quadratic increase in quantum dot count upon a linear increase in control lines. The crossbar is fabricated on an industrial $^{28}$Si-MOS stack and shows 100% FET yield at cryogenic temperature. We observe a decreasing threshold voltage for wider channel devices and obtain a normal distribution of pinch-off voltages for nominally identical tunnel barriers probed over 1296 gate crossings. Macroscopically across the crossbar, we measure an average pinch-off of 1.17~V with a standard deviation of 46.8 mV, while local differences within each unit cell indicate a standard deviation of 23.1~mV. These disorder potential landscape variations translate to 1.2 and 0.6 times the measured quantum dot charging energy, respectively. Such metrics provide means for material and device optimization and serve as guidelines in the design of large-scale architectures for fault-tolerant semiconductor-based quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源