论文标题

用于端到端动态占用网格映射的多任务复发性神经网络

A Multi-Task Recurrent Neural Network for End-to-End Dynamic Occupancy Grid Mapping

论文作者

Schreiber, Marcel, Belagiannis, Vasileios, Gläser, Claudius, Dietmayer, Klaus

论文摘要

建模自动驾驶汽车环境的一种常见方法是动态的占用网格图,其中周围环境分为细胞,每个图都包含其位置的占用和速度状态。尽管对任意形状对象进行建模的优势,但使用的算法依赖于手工设计的逆传感器模型和语义信息。因此,我们引入了一个多任务复发性神经网络,以预测提供占用,速度估计,语义信息和可驱动区域的网格图。在训练过程中,我们的网络体系结构是卷积和经常性层的组合,即原始LIDAR数据的序列,该序列表示为带有多个高度通道的Bird's Eye View图像。多任务网络以端到端的方式进行了训练,可以预测占用网格图,而无需通常的预处理步骤,包括删除地面点和应用逆传感器模型。在我们的评估中,我们表明我们学到的逆传感器模型能够在表示对象形状和建模自由空间的角度克服几何逆传感器模型的某些局限性。此外,与依靠测量网格图作为输入数据相比,我们报告了我们的端到端方法的更好的运行时性能和更准确的语义预测。

A common approach for modeling the environment of an autonomous vehicle are dynamic occupancy grid maps, in which the surrounding is divided into cells, each containing the occupancy and velocity state of its location. Despite the advantage of modeling arbitrary shaped objects, the used algorithms rely on hand-designed inverse sensor models and semantic information is missing. Therefore, we introduce a multi-task recurrent neural network to predict grid maps providing occupancies, velocity estimates, semantic information and the driveable area. During training, our network architecture, which is a combination of convolutional and recurrent layers, processes sequences of raw lidar data, that is represented as bird's eye view images with several height channels. The multi-task network is trained in an end-to-end fashion to predict occupancy grid maps without the usual preprocessing steps consisting of removing ground points and applying an inverse sensor model. In our evaluations, we show that our learned inverse sensor model is able to overcome some limitations of a geometric inverse sensor model in terms of representing object shapes and modeling freespace. Moreover, we report a better runtime performance and more accurate semantic predictions for our end-to-end approach, compared to our network relying on measurement grid maps as input data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源