论文标题
通过早期宇宙中隐藏的部门动态分析哈勃张力
Analyzing the Hubble tension through hidden sector dynamics in the early universe
论文作者
论文摘要
SH0ES合作的最新分析证实了高红移($ z> 1000 $)和低红移($ z <1 $)的测量值之间存在哈勃张力,并以$5σ$级别的水平,具有低红移测量值,可提供更高的价值。在这项工作中,我们提出了一个粒子物理模型,该模型可以通过与可见的扇区耦合的不平衡隐藏扇区来缓解哈勃张力。填充黑暗区域的颗粒由深色费米亚组成,该暗效率像暗物质,深色光子,大量的标量和无质量的伪量表。假设黑暗区域中没有颗粒的初始群体,即使隐藏区域颗粒的数量密度永远无法达到平衡分布,并且两个部门仍然保持在不同的温度下,那么可见的和隐藏扇区之间的微弱耦合也会填充黑暗部门。在宇宙学上进行了一致的分析,其中进行了可见的和隐藏扇区的相关性演变,并带有耦合的玻尔兹曼方程,其中涉及两个温度,一个用于可见的部门,另一个用于隐藏部门。暗物质构成的暗物质的遗物密度是在这种两个温度的形式主义中计算的。结果,BBN预测得到维持,对$Δn_ {\ rm eff} $的贡献最少。然而,接近重组时间的无质量标量向无质量量表的不平衡衰减导致$Δn_ {\ rm eff} $增加,这可以帮助削弱哈勃的张力。
The recent analysis from the SH0ES Collaboration has confirmed the existence of a Hubble tension between measurements at high redshift ($z> 1000$) and at low redshift ($z<1$) at the $5σ$ level with the low redshift measurement giving a higher value. In this work we propose a particle physics model that can help alleviate the Hubble tension via an out-of-equilibrium hidden sector coupled to the visible sector. The particles that populate the dark sector consist of a dark fermion, which acts as dark matter, a dark photon, a massive scalar and a massless pseudo-scalar. Assuming no initial population of particles in the dark sector, feeble couplings between the visible and the hidden sectors via kinetic mixing populate the dark sector even though the number densities of hidden sector particles never reach their equilibrium distribution and the two sectors remain at different temperatures. A cosmologically consistent analysis is presented where a correlated evolution of the visible and the hidden sectors with coupled Boltzmann equations involving two temperatures, one for the visible sector and the other for the hidden sector, is carried out. The relic density of the dark matter constituted of dark fermions is computed in this two-temperature formalism. As a consequence, BBN predictions are upheld with a minimal contribution to $ΔN_{\rm eff}$. However, the out-of-equilibrium decay of the massive scalar to the massless pseudo-scalar close to the recombination time causes an increase in $ΔN_{\rm eff}$ that can help weaken the Hubble tension.