论文标题
电动的单原子'触发器Qubit
An electrically-driven single-atom `flip-flop' qubit
论文作者
论文摘要
原子和原子状系统的旋转是存储量子信息的最连贯的对象之一。但是,需要使用振荡磁场来解决它们的需求阻碍了它们与量子电子设备的整合。在这里,我们通过在硅中操作单原子'flop'Qubit来绕过这一障碍,在硅供体的电子核状态下,量子信息在其中编码量子信息。量子位在金属 - 氧化物 - 高度导体设备中产生的微波频率下使用局部电场进行控制。电驱动是通过电子核超精细偶联的调节介导的,该方法可以扩展到许多其他原子和分子系统。这些结果为建造固态量子处理器的构建铺平了道路,在该处理器中只能使用局部电场来控制原子的密集阵列。
The spins of atoms and atom-like systems are among the most coherent objects in which to store quantum information. However, the need to address them using oscillating magnetic fields hinders their integration with quantum electronic devices. Here we circumvent this hurdle by operating a single-atom `flip-flop' qubit in silicon, where quantum information is encoded in the electron-nuclear states of a phosphorus donor. The qubit is controlled using local electric fields at microwave frequencies, produced within a metal-oxide-semiconductor device. The electrical drive is mediated by the modulation of the electron-nuclear hyperfine coupling, a method that can be extended to many other atomic and molecular systems. These results pave the way to the construction of solid-state quantum processors where dense arrays of atoms can be controlled using only local electric fields.