论文标题
合成肝血管树的严格数学优化
Rigorous mathematical optimization of synthetic hepatic vascular trees
论文作者
论文摘要
在本文中,我们基于严格的基于模型的数学优化,引入了一个新的框架,用于生成合成的血管树。我们的主要贡献是将最佳全球树几何形状(NLP)找到最佳的全局树几何形状进行重新制定。这种严格的数学公式可容纳有效的解决方案算法,例如内部点方法,使我们能够轻松地更改对树的边界条件和约束。此外,它除分叉外还创建了三裂。第二个贡献是增加树拓扑的优化阶段。在这里,我们将受限的建设性优化(CCO)与可能的树拓扑之间的搜索方法结合在一起。我们将NLP公式和拓扑优化相结合到单个算法方法中。最后,我们尝试使用人肝脏的详细腐蚀铸件来验证我们的新基于模型的优化框架,从而可以对合成树结构与树结构进行定量比较,从实验确定到第五代。结果表明,我们的新框架能够产生与标准CCO方法相比,与可用生理腐蚀数据相匹配的不对称合成树。
In this paper, we introduce a new framework for generating synthetic vascular trees, based on rigorous model-based mathematical optimization. Our main contribution is the reformulation of finding the optimal global tree geometry into a nonlinear optimization problem (NLP). This rigorous mathematical formulation accommodates efficient solution algorithms such as the interior point method and allows us to easily change boundary conditions and constraints applied to the tree. Moreover, it creates trifurcations in addition to bifurcations. A second contribution is the addition of an optimization stage for the tree topology. Here, we combine constrained constructive optimization (CCO) with a heuristic approach to search among possible tree topologies. We combine the NLP formulation and the topology optimization into a single algorithmic approach. Finally, we attempt the validation of our new model-based optimization framework using a detailed corrosion cast of a human liver, which allows a quantitative comparison of the synthetic tree structure to the tree structure determined experimentally down to the fifth generation. The results show that our new framework is capable of generating asymmetric synthetic trees that match the available physiological corrosion cast data better than trees generated by the standard CCO approach.